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Abstract: After watching AlphaGo a Netflix documentary which presents 
how AlphaGo is an AI computer game developed by deep-mind technologies 
based on deep reinforcement learning (DRL). Since then, my interest in 
reinforcement learning has been growing. In this project, I will apply 
reinforcement learning to develop an agent to play snake game. Where Deep 
learning will implement a neural Network to help the agent (snake) to learn 
what action must take to get a state. If we describe deep reinforcement 
learning (DRL) model where agent interacts with an environment and chooses 
an action. Based on action, agents receive feedback from the environment as 
states (or perceives) and rewards. A state = an array with 11 input values, 
each input values represent a neural network that provides an output of 3 
values, each one represents three possible actions the agent (snake) can take 
(Straight, Right Turn and Left Turn). 
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1. Introduction 
In recent years, games, robotics, self-driving cars, industry automation and remote sensing are 
utilizing Deep reinforcement learning to implement in real life [1]. In this Reinforcement Learning 
development of the Snake game, I will use DRL - Deep Reinforcement Learning Model 
Reinforcement Learning and Deep Learning (DL) combines together in place of the old, supervised 
approach because traditional ML (Machine Learning) algorithms require training with an input state 
and target label, but in this example, we do not know which the best action is to perform at each step 
of the game. A wide variety of computational techniques are available in the Reinforcement Learning 
sub-field of machine learning, which allows an agent to learn the appropriate control strategies or 
policy by directly interacting with its environment [2]. The deep reinforcement learning agent or DRL 
agent perceives the environment and gets the environment’s state iteratively. Next the agents perform 
an action based on state and get a value function (reward) from the environment. Agent intends to 
achieve a better action (policy) by gaining the maximum value function. DRL allows RL to deal with 
problems that have high-dimensional action and state space [3]. Deep Neural Network helps to 
compress feature driven approximations in the Deep Reinforcement learning solution which allows 
representation of environment’s state and action [4] [6]. 
 
2. Literature Review 
Deep mind used neural networks in Atari games to recruit and train agents that eventually 
outperformed real players on multiple games in 2013 [5]. Policy Gradient and Deep Neural Network 
(DNN) can be approximated by agent through value function (reward) and policy. Some of the 
problems in deep neural network can be avoided using the large storage sequence space of tables and 
slow tables which are the parts of table store data. It used Transmission and Deep Neural Network to 
approximate value functions and policies. Huge storage establishments of columns and slow feedback 
are the issues associated with table store data, these issues can be solved using deep neural network 
(DNN) measurement. 
 
2.1.  PACMAN in Deep Reinforcement Learning (Q-learning) 
The aim of this research is to teach the Pacman agent using deep reinforcement learning or Q-learning 
to operate cleverly to get higher scores by avoiding ghosts, consuming food, and being as scared of 
the ghosts as possible. Researchers motivated to work on this project not only because they want to do 
reinforcement learning and integrate a neural network on their own, but also because we think to see a 
trained Pacman agent is visually appealing. All of the reinforcement learning techniques they used in 
this project were built using the code for the Pacman game emulator. They apply various Deep 
Reinforcement learning methods to the traditional game Pacman [7]. 
 
2.2.  Deep Reinforcement Learning in ATARI game  
A new deep reinforcement learning (DRL) model is beautifully presented in this paper, and it is 
shown that using only raw pixel input, it can learn challenging control strategies for Atari 2600 video 
games [5]. In order to facilitate the instruction of deep networks for RL, an online Q-learning variant 
that communicated stochastic mini-batch updates with experience buffer was also presented in this 
research paper. Their method produced innovative results without changing the architecture or hyper-
parameters in the six games out of seven those us tested. 
 
2.3.  Technology Used 
This part will explain about the technologies that are used to develop the agent and environment for 
the snake game and to evaluate DRL model. 
1. Python 3.10.1 

High-level, object-oriented programming languages are the main characteristics of Python. It is 
relatively concise compared to other languages like Java and has a simple syntax that helps to 
make its code very readable and simple to learn. It is frequently regarded as the best language for 
quickly developing high-quality applications. 

2. PyCharm IDE (Integrated Development Environment)  
All the features necessary to build an application as rapidly as possible will be present in a good 
IDE. Professional-level IDE PyCharm has tools for debugging, code completion, and simple 
refactoring. 
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3. Pygame  
It is a collection of cross-platform Python game development tools. It provides Python 
programming language-compatible sound and graphics libraries. 

4. Torch  
It is a Torch-based open-source library that is frequently used for Deep Learning applications on 
both CPUs and GPUs. It supports computational graphs at runtime and is quick and simple to 
use. 

5. Numpy  
High performance multi-dimensional arrays and matrices are supported by NumPy, a Python 
package. It offers computational graph support during runtime. It offers optimization, is quick, 
and is adaptable. 

6. Matplotlib 
The data set for machine learning projects contains a lot of information. Therefore, the Python 
matplotlib library allows the developer to plot a wide range of charts such as bar plots, scatter 
plots, histograms, and so on whenever the programmer is unable to analyse the data. Another 
name for Matplotlib is a library for data visualization. 

 
3. Methodology 
3.1. Reinforcement Learning  
When we are young, the first thing we do is try waving our hands or crying in hopes of getting 
attention. We can learn about our immediate ambiances, various events and logic, action, and the 
outcomes, how to complete our goals by the responses we get back. Therefore, we can engage with 
outside surroundings in our child’s development stage. It is proven that the foundation of learning 
from interaction invented the most intellectual theories. Reinforcement learning is considered a type 
of learning from interaction which can develop Artificial intelligence (AI) in the most proper way [8]. 
 
3.2. DNN - Deep Neural Network 
Deep neural network consists of some nodes and layers. Input layer is known as the first in DNN 
where data is received from users or receiver device/function. The second layer is the hidden layers 
where data is transformed using activation functions and weights to transfer data to the output layer. 
Output layer is the end of the layer where the goal is predicted. Patterns and expand their prediction 
trained in the network by calculating the weights [9].  
 
3.3. DRL - Deep Reinforcement Learning 
Perception and decision making are the benefits of deep learning and reinforcement learning those 
developed Deep Reinforcement Learning and it has the capability to control output signals based 
individual input [6]. Thanks to this mechanism, which made human cognitive modes are much closer 
to artificial intelligence [10]. 
 
3.4. Algorithm for Reinforcement Learning 
The Model, Policy, Action, State, and Operator that each algorithm employs can be used to make a 
rough comparison between them. There are several reinforcement algorithms include can be used to 
develop an agent to play snake game. 
 
3.4.1. Monte Carlo (MC)  
The Monte Carlo method is an easy and fast-going concept where an agent communicates with the 
environment and learns about states and rewards. In this concept, agent observed the environment and 
get a state from the environment and calculate the state to take a move or action based on the average 
feedback [12], [13]. If we look at Monte Carlo (MC) model, Reward is only achieved at a specific 
large stage where previous stage state and action are considered as good to enhance the reward 
mechanism of the previous stage state. 
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Figure 1. Monte Carlo Model (**Source Wu, C., 2019) 

 
3.4.2. Markov decision process (MDP)  
The Markov methodology is a procedure which considers the present state more than anything. In 
Figure 2, the Markov decision process prioritized the thinking of a scenario. In this model, ACTION = 
a0, a1 in the figure, STATE = S0, S1, S2, in the figure and reward will be given for each state are 
+100 and -100 (curve turn arrow in the figure) [14], [15]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Markov Decision Process Model (**Source Wu, C., 2019) 
 

3.4.3. Neural Network layers in Deep Reinforcement Learning  
Deep neural network consists of some nodes and layers. Input layer is known as the first in DNN 
where data is received from users or receiver device/function. The second layer is the hidden layers 
where data is transformed using activation functions and weights to transfer data to the output layer. 
Output layer is the end of the layer where the goal is predicted. Patterns and expand their prediction 
trained in the network by calculating the weights [9]. Perception and decision making are the benefits 
of deep learning and reinforcement learning those developed Deep Reinforcement Learning and it has 
the capability to control output signals based individual input [6]. 
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Figure 3. Neural Network in DQN (**Source https://towardsdatascience.com/) 
 

3.5. Problem Formulation 
Snake game is a very common 2D game which has three elements snake, boundaries and food and the 
game is played by a human. On a bordered plane, the player gets to control a dot, rectangle, or object. 
When the agent (snake) hits the screen boundary, a path or other obstruction, or itself, the player loses 
[16]. In this situation or problem our goal is to create an agent using Deep reinforcement learning 
which will help the snake to play the game and make scores. 
 
3.5.1. Model 
To solve the mentioned problem to create a Deep reinforcement agent to play snake game. Deep 
Reinforcement Learning or DRL model will be developed to control or play the whole game. Where 
reinforcement learning and deep learning combine together to become deep reinforcement learning 
(DRL). In DRL, Reinforcement learning (RL) helps to handle problems by high dimensional state and 
action in Reinforcement Learning (RL) assist to handle problems, other-hand high dimensional state 
and action transformed in a low dimensional function by helping of deep neural network (DNN) [17]. 

In my Deep Reinforcement Learning DRL model, Snake the agent interacts with an environment 
and chooses an action. Based on action, agents receive feedback from the environment as states (or 
perceives) and rewards. A state = an array with 11 input values in input layer, each input values 
represent a neural network that provides an output of 3 values in output layer, each one represents 
three possible actions in output layer the agent (snake) can take (Straight, Right Turn and Left Turn). 
Below I have shown the state, action, and rewards in my snake game model. 

 
Table 1. Agent Component Represent 

 
States 

Danger straight 
Danger right 
Danger left 
Direction left Policy Value Function 
Direction right Straight Eat food +1 
Direction up Right turn  Game over -1 
Direction down Left turn Else 0 
Food-left 
Food-right 
Food-up 
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Figure 4. Snake Game Model Diagram 

 
3.5.2. Agent Components 
3.5.2.1. Agent State 
The agent state is a reflection of the snake game that the agent can comprehend; it contains the crucial 
data that the agent must process in order to decide what action to take. Understanding how to use. The 
state is significant because it affects how well the agent performs and how quickly it processes 
information. If we provide more relevant data, the agent will perform much better but process 
information more slowly. An array of 11 values that contains the state's implementation in this model 
provides the agent with the data it requires to process and foresee the best course of action. Each 
value, which can either be 0 or 1, stands for a different thing. 
 

Table 2. 11 States Input 
 

No State Value 
1 Danger straight 0 or 1 
2 Danger right 0 or 1 
3 Danger left 0 or 1 
4 Direction left 0 or 1 
5 Direction right 0 or 1 
6 Direction up 0 or 1 
7 Direction down 0 or 1 
8 Food-left 0 or 1 
9 Food-right 0 or 1 

10 Food-up 0 or 1 
11 Food-down 0 or 1 

 
3.5.2.2. Policy 
The moves are those that the agent may make in light of a specific state. The agent can only make 
three movements in this model: a right or left turn, and a straight line. Three values in an array, 
ranging from 0 to 1, can be used to represent these actions. The probability that each action will be the 
best choice is represented by each value. 
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Table 3. Three Policy or Actions 
 

No Policy 

1 Right turn 

2 Left turn 

3 Straight 

 
3.5.2.3. Value Function 
The moves are those that the agent may make in light of a specific state. The agent can only make 
three movements in this model: a right or left turn, and a straight line. Three values in an array, 
ranging from 0 to 1, can be used to represent these actions. The probability that each action will be the 
best choice is represented by each value. 
 

Table 4. Three Value Functions or Rewards 
 

No Function Value 
1 Eat food +1 
2 Game over -1 
3 Else 0 

 
3.6. Agent and Environment 
Based on pygame, we create our own snake environment. The setups in our environment vary. For 
instance, we can decide whether the snake can cross a boundary or not, the size of the environment, 
and whether there are any obstacles to the surroundings. By incorporating a few Methods into the 
Snake game, a Reinforcement Learning environment can be implemented. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
Figure 5. Snake Game Flowchart Diagram 

 
Foods are the snake's reward. Red color object in the environment is identified as the food in the 
environment. The food stays in the same position until it is eaten by the snake, at this point food 
appears again in a different location. If the snake is successful in eating the food, add one to the score. 
The little snake will develop after eating the food, extending its body. 
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4. Finding and Discussion 
4.1. Finding 
The research resulted in the development of a trained DRL model. It consisted of 3 different layers 
where the first one had 11 nodes, second layer is a hidden layer, and the last layer is an output layer 
with 3 nodes. I used training and validation sets to easily measure the performance of my model, I 
collected the training and validation sets during evaluation and training time. Total rewards in the 
game episodes collected by the agent are considered evaluation indication. The graph in Figure 6. 
Shows the first few games where the agent has no idea what to do. So, it was trying to explore the 
environment and make some random moves. The rewards at this level were exceptionally low. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Snake Location Initial Rounds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Rewards in Demographic Initial Rounds 
 
Next the graph in figure 9 shows peak episodes of games where the agent learns all the strategy. And 
this time agents achieve higher rewards. This is because agents can avoid any obstacles such as 
avoiding their own body, not to hit boundaries and eat the food as much as possible to get rewards.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Snake Location Peak Rounds 
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Figure 9. Rewards in Demographic Peak Rounds 
 
4.1. Discussion  
4.1.1. Agent Play with State 
State parameters affect the behavior of the agent. Agent could achieve a similar or better performance 
by changing state space instead of playing experience replay. There are four state spaces that can 
apply. First, “no direction” where the agent will not get any direction. Second, “coordinates” where 
the food location maybe change with food coordinate (x, y) or the snake (x, y). Third, “direction 0 or 
1” which is the actual state used in the model. Last but not least, “only wall” where agent will notify 
by the walls no other direction. 
 
4.1.2. Agent Play with Rewards 
The aim of the snake or agent is to reach food by taking the shortest path in the most logical way. 
There are a few rewards systems that I used in reward space. 
1. Simple or Current Reward 

 
Table 5. Simple or Current Reward 

No Rewards Value 
1 Eat food +1 
2 Game over -1 
3 Else 0 

 
2. Surviving Reward 

Table 6. Surviving Reward 
No Rewards Value 
1 Eat food +1 
2 Game over -1 
3 Snake survives +2 

 
By this reward system, snake will walk without getting killed. And snake will make more score 
by walking than eating the food 

 
3. Increase Reward Value 

Table 7. Increase Reward Value 
No Rewards Value 
1 Eat food +10 
2 Game over -1 
3 Snake survives +2 

 
By this reward system, snake could find the shortest path to eat food. But it has more chance to 
bite itself and die. 
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4.1.3. By Experience 
Experience replay is the basis for the agent's learning (only 30 games are required). In this concept, 
agents acquire knowledge by experiencing and make use of them to pick up new information more 
quickly. Multiple replay steps are carried out at each regular step (batch size parameter). Snake 
benefits from this because the reward and subsequent state are relatively consistent when the same 
state-action pair is used. 
 
5. Conclusion 
In this study, I tried to present a Deep Reinforcement Learning model to coach an agent how to play 
the snake game. Reinforcement learning (RL) and deep neural network (DNN) related literature 
review has been shown and discussed. Compared to other solutions in literature review Deep 
Reinforcement Learning (DRL) was proved as a straightforward model which is very easy to train. In 
the snake game, agents learn to play games and achieve high scores time by time where the agent 
achieves high scores 46 and 52 after playing 140 games. It was pretty satisfying compared to another 
agent.  

There is a limitation or problem in our solution. The agent does not learn to avoid scrolling or 
biting itself. It learns to avoid any obstacle in front of the snake head, but it cannot see the whole 
game. When the snake is longer, the agent will scroll itself and die. In consequence, the highest score 
of the game is always confined to a certain number.  

To solve the problem stated in the limitation part, I can implement state space using Convolutional 
Neural Network and pixels. Using pixels and CNN (Convolutional Neural Network) agent could see 
the whole game instead of seeing just obstacles only [14]. So that the agent could recognize his 
location to avoid scrolling itself and it can achieve higher scores. In my future works I will try to 
explore to combine Reinforcement Learning and Convolutional Neural Network (CNN) to create an 
optimal model to play snake game. 
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