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Abstract: Chronic Kidney Disease (CKD) is a stage in which the kidney
cannot filter waste from the blood that circulates in the body; unfortunately,
this stage is mostly detected at a late stage, leading to dialysis or
transplantation. Early detection is important for the effective management of
CKD. ML has shown success in the early prediction of CKD by using an
algorithm that learns and predicts without being programmed. ML requires
appropriate datasets for this process, and one of the aspects is dimensionality
reduction, which addresses the challenges of unnecessary tests, high-cost tests
and the use of redundant tests. Principal Component Analysis (PCA) is a
widely used method for dimensionality reduction; however, it relies on linear
transformation to identify relationships within features. Medical datasets such
as CKD exhibit complex nonlinear features, which is important for exploring
alternative dimensionality reduction methods that can rely on nonlinear
transformation. This study aims to propose an ML approach that utilises
kernel PCA to reduce dimensionality based on nonlinearity structures and
enhance the prediction of CKD. We evaluated seven ML models on the
different kernel functions of PCA. The ML models included random forest
(RF), decision tree (DT), multilayer perceptron (MLP), support vector
machine (SVM), extreme gradient boosting (XgBoost), adaptive boosting
(AdaBoost), logistic regression (LR), and gradient boosting. The kernel
functions used for dimensionality reduction are cosine principal component
analysis (CPCA), polynomial principal component analysis (PPCA), radial
basis principal component analysis (RPCA), sigmoid principal component
analysis (SPCA) and linear principal component analysis (LPCA). The results
of the study revealed that the MLP with RPCA, SPCA and CPCA achieved
good performance in predicting CKD, with an accuracy score of 99% on
DB, and that the MLP with RPCA and SPCA achieved good performance in
predicting CKD, with an accuracy score of 100% on DB2. The study showed
how kernel PCA, which effectively reduces high dimensionality-based
nonlinearity relationships, can positively affect the performance of predictive
models and the power of dimensionality reduction toward disease prediction.

Keywords: Chronic Kidney Disease, Dimensionality Reduction, Kernel
Function, Multilayer Perceptron, Principal Component Analysis.
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1. Introduction

The kidney is an organ that filters waste from the blood and passes it out through urine. It also has
other functions, such as maintaining fluid and electrolyte balance, regulating blood pressure,
controlling red blood cell production, producing vitamin D, and managing pH levels [1]. However,
when the kidney gradually loses its ability to filter waste and accumulate waste and fluids in the body,
chronic kidney disease (CKD) can occur. CKD is defined based on glomerular filtration removal
(GFR) and albuminuria, where the GFR is used to assess excretion while albuminuria crosses the
renal barrier [2].

In 2016, CKD affected 336 million men and 417 million women, amounting to 753 globally. Due
to the high cost of frequent dialysis or kidney replacement surgery, more than 1 million people in 112
developing nations pass away from renal failure each year. Therefore, early detection and treatment
are vital to reduce the burden of CKD on public health [3]. Machine learning (ML) uses algorithms to
learn and find patterns from enormous amounts of data recently used in healthcare on electronic
medical records (EMRs). ML algorithms can effectively predict CKD and enable early treatment at a
lower cost [4].

ML requires other methods, such as feature selection, to improve performance. By introducing
dimensionality reduction from a dataset, ML reduces the number of unnecessary tests, lowers the
financial burden, and minimises redundant testing while improving the effort of diagnosing CKD with
great accuracy [S]. Techniques such as PCA have achieved success in reducing the dimensionality of
the dataset by considering linear relationships between features [6]. Standard principal component
analysis (PCA) identifies linear subsets in data that capture the highest variation but cannot detect
nonlinear patterns. Kernel-based PCA addresses this limitation by mapping the input space
nonlinearly, effectively reducing dimensionality in high-dimensional spaces. This allows adjustments
to class boundaries via the kernel, resulting in a nonlinear transformation of data points [7].

This study contributes to the development of a modified PCA feature reduction approach with an
MLP to predict CKD. The proposed study explored how a kernel PCA can reduce high dimensionality
in features while considering the nonlinear correlation between features. This study highlighted how
this approach can also improve the performance of the ML model in predicting CKD.

2. Literature Review
This section presents existing studies conducted on CKD prediction via machine learning algorithms
and feature selection techniques.

Research in [6] shows the power of the genetic algorithm and PCA in enhancing the MLP in the
prediction of CKD. The model predicts CKD based on 20 components after applying PCA to reduce
the dimensionality of the dataset. The model achieved 98.34% and 98.54% accuracy during training
and testing, respectively [1] highlighted the capacity of ML models to detect CKD with fewer tests or
features. The author proposed a hybrid feature selection method comprising a chi-square test (Chi2)
and mutual information with an extra tree classifier to predict CKD with 98.00% accuracy. This study
explored how the combination of two feature selections in selecting the most impactful features based
on correlation scores can improve the accuracy of ML.

In a study by [8], a CNN was developed to forecast the occurrence of CKD within the next 6 and
12 months and achieved rates of 89.00% and 88.00%, respectively. This study also explored the most
prominent features for the prediction of CKD. A study by [9] proposed an XgBoost classifier for the
early detection of CKD; the proposed model achieved the highest accuracy of 98.30%, and the study
also highlighted how PCA can improve the accuracy of the ML model after reducing the high
dimensionality of the dataset. Abdullahi et al (2019) also evaluated the performance of different
feature selection methods in classifying CKD, and random forest feature selection achieved the best
accuracy, with an RF of 98.82%. Disease datasets such as CKD datasets have many features that lead
to high-dimensional data, which affects the performance of the ML algorithm.

Table 1 shows some of the reviewed works carried out on the prediction of CKD.

3. Methodology

This section discusses the various materials and methods used in this study. Data preprocessing,
feature reduction and MLP were applied to predict CKD, the methodology of this study is illustrated
in Figure 1.
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Table 1. Background Study on the Existing Works on CKD Prediction

Reference Contribution Result

[1] A proposed hybrid Chi-squared test The hybrid Chi-squared test (Chi2)
(Chi2) and Mutual Information (MI) and Mutual Information (MI) based
based feature selection method with Extra feature selection method achieved
Trees classifier for prediction of CKD 98% accuracy.

[6] CKD prediction using optimized MLP The optimized MLP and the feature
and GA with the implementation of PCA  reduction approach achieved 98.34%
for feature reduction and 98.54% accuracy during training

and testing, respectively.

[8] Development of a machine learning The proposed CNN achieved 89.00%
model to forecast the occurrence of CKD and 88.00% accuracy for the 6-month
within the following 6 or 12 months and 12-month predictions.

[10] Development of ML model with feature The study showed that RF with RF
selection to classify CKD feature selection can classify CKD

with 98.825 accuracy

[9] A Proposed machine learning model for The study XGBoost classifier for
early detection of CKD prediction of CKD with 98.30%

accuracy

[11] Development of a machine learning The developed decision tree achieved
model for chronic renal disease prognosis  97.00% accuracy.

[12] A proposed predictive model for With PCA applied to reduce the
detecting CKD using 30% of original original features to 30% and the
features XgBoost classifier, the model

achieved 98.30% accuracy.
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Figure 1. Proposed Methodology
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3.1. Dataset Description
The CKD dataset used in the study was obtained from two sources. The first CKD dataset was from
Apollo Hospital, Tamil Nadu, in July 2015 and is available online at the University of California,
Irvine Machine Learning Repository (UCI) [13], within 2 months and a year ranging from 2 to 90
years of age. The public dataset has 400 instances and 25 features, including both input and output
features.

The input features have 11 categorical and 14 numerical values, whereas the output feature has
CKD and NCKD values representing the presence and absence of CKD. The dataset has 250 and 150
instances of CKD and NCKD, respectively.

A description of the features is provided in Table 2, and an overview of the dataset features is
shown in Table 3.

Table 2. Description of Features from DB2

S/No Feature Type Full Name Units
1 age Number Individual Age 2-90 years
2 bp Number Blood Pressure measured  50-180 mm/Hg
3 sg Number Specific Gravity 1.005-1.025
4 al Number Albumin 0-5
5 su Number Sugar 0-5
6 rbe Categorical Red Blood Cells Normal/abnormal
7 pc Categorical Pus cell Normal/abnormal
8 pce Categorical Pus cell clumps Present/not present
9 ba Categorical Bacteria Present/notpresent
10  bgr Number Blood Glucose Random  22-490 mgs/dl
11 bu Number Blood urea 1.5-391 mgs/dl
12 sc Number Serum Creatinine 0.4-76 mgs/dl
13 sod Number Sodium 4.5-163 mEq/L
14 pot Number Potassium 2.5-47 mEq/L
15  hemo Number Haemoglobin 3.1-17.8 gms
16  pcv Number Packed Cell Volume 9-54
17 wbcc Number White blood Cells Count  2200-26400 cells/cmm
18  rbec Number Red Blood Cells Count 2.1-6.5 millions/cmm
19  htm Categorical Hypertension Yes/no
20 dm Categorical Diabetes Mellitus Yes/no
21  cad Categorical Coronary Artery Disease  Yes/no
22 appet Categorical Appetite Good/poor
23 pe Categorical Pedal Edema Yes/no
24  ane Categorical Anemia Yes/no
25  classification Class Classification CKD/NotCKD

The second dataset is the CKD dataset obtained from the UCI Repository and collected from Enam
Medical College, Savar, Dhaka, Bangladesh [14]. The dataset has 200 instances consisting of 26 input
features and 1 input feature. The feature "affected" is the input feature with 1 and O classes.

A summary of the dataset and feature descriptions are shown in Table 4 and Table 5.
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Table 3. Overview of DB1

Item Description
Name CKD dataset
Data source UCI ML Repository
Total records 400
Total columns 26
Input features 24
Output features 1
Class CKD/NCKD
Categorical values 11
Numerical values 14
Class distribution 250/150(CKD/NCKD)
Missing values 1009
Missing rows 242

Years
Period

2 to 90 years

2 months

Table 4. Description of Features from DB2

S/No Feature Type Full Name Units
1 bp (Diastolic) Number blood pressure (Diastolic) mm/Hg
2 bp limit Number Blood Pressure limit mm/Hg
3 sg Categorical Specific Gravity 1005 to 10025
4 al Categorical Albumin 0-5
5 class Binary Classification CKD/NCKD
6 rbe Number Red Blood Cells Normal/abnormal
7 su Categorical Sugar 0-5
8 pc Number Pus cell Normal/abnormal
9 pce Number Pus cell clumps Present/not present
10 ba Number Bacteria Present/notpresent
11 bgr Categorical Blood Glucose Random mgs/dl
12 bu Categorical Blood urea mgs/dl
13 sod Categorical Sodium mEq/L
14  sc Categorical Serum Creatinine 0.4-76 mgs/dl
15  pot Categorical Potassium mEq/L
16  hemo Categorical Haemoglobin 3.1-17.8 gms
17 pev Categorical Packed Cell Volume 9-54
18  rbce Categorical Red Blood Cells Count 2.1-6.5 millions/cmm
19  wbcc Categorical White blood Cells Count 2200-26400 cells/cmm
20  htn Number Hypertension y€es or no
21  dm Number Diabetes Mellitus Yes/no
22 cad Number Coronary Artery Disease Yes/no
23 appet Number Appetite Good/poor
24 pe Number Pedal Edema Yes/no
25 ane Number Anemia Yes/no
26  grf Categorical Glomerular filtration rate mL/min
27  stage Categorical Stage 1-4
28  affected Number Affected Yes/No
29  age Categorical Age <74
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Table 5. Overview of DB2

Item Description
Name CKD dataset
Data source UCI ML Repository
Total records 200
Total columns 28
Input features 26
Output features 1
Class 1/0
Categorical values 12
Numerical values 14
Class distribution 0/1
Missing values 0
Missing rows 0
Years <74 years
Period NA

3.2. Data Preparation

DB2 has no missing values, but DB1 has some missing values, and out of 400 instances, 242
instances have missing values. Additionally, out of the 25 features, all the features have missing
values except for the classification feature, and the total number of cells with missing cells is 1009.
For columns with numeric values, we used KNN Imputer to fill in the missing values of the CKD
dataset by identifying the closest data point. The technique calculates the similarity between rows
based on the available data in other columns, and the techniques find the average of the values from
the 5 neighbours and uses the average to fill in the missing cells. For columns with categorical values,
missing cells are filled with the mode in the dataset; by calculating the most frequent value of the
column and filling the missing cell with it, the equation of the KNN imputer is shown in Equation 1.

. -~ 1
ENN = :)‘:EJ = ;E}'EJ\";{I:E:I x}- (1)

The datasets have categorical columns such as 'tbc', 'pc', 'pec', 'ba’, 'htn', 'dm', 'cad', 'appet', 'pe’,
'ane', and 'classification’, where the values are not represented as numbers but as groups of categories.
This study uses LabelEncoder to assign a unique category in each categorical column and assigns
numerical values to a unique category. To standardise the range of values of the independent features,
we used min-max scaling to standardise the range of values so that the model would not be biased
based on the inconsistent range of the independent features.

3.3. Dimensionality Reduction

The process of selecting the most critical risk features in healthcare helps to remove redundant
features and can be used to minimise model training time, improve data quality, and enhance
prediction performance. Recent studies have paved the way for different techniques that help in
choosing the best features and removing less important features [1]. Dimensionality reduction is the
method used to convert high-dimensional data into low-dimensional data while maintaining the
original structure and meaning of the data. Dimensionality reduction is widely used to minimise noise
and irrelevant data, which enhances the ability of models to work more efficiently and improves
accuracy [15]. Principal component analysis is a dimensional reduction technique that is used to
reduce the high dimensionality of a dataset by recognizing a small set of principal components that
capture the most important information from the dataset.

PCA helps improve the model's efficiency and computational complexity, but it also has several
limitations, such as the process of identifying data based on their linear relation to the principal
components when high dimensionality is reduced [16]. Kernel PCA extends PCA to nonlinear
dimensionality reduction by employing a kernel function to map the data into a higher-dimensional
feature space. It allows for capturing complex relationships between variables and is particularly
useful when the data have nonlinear structures [16]. Kernel PCA has five functions: cosine-principal
component (CPCA), polynomial principal component analysis (PPCA), radial basis function (RPCA),
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sigmoid principal component analysis (SPCA) and PCA, which use a linear function [7]. The
functions are defined as follows:

The linear function is described below:

f(xi’xl'} = XXy (2)

The sigmoid function is described below:

f(x,¥) = tanh (axy + ¢) 3)

The polynomial function is described below:

Polynomial f(xi,x,-) = (Iz- ‘x; + C): *)

The radial basis function is described below:

fxon;) = exp (=vllxll - 11x]]°) 5)

The cosine function is described below:

fxox;) = fl: 111 "’

3.4. Machine Learning Models

Machine learning (ML) is a technique that uses algorithms to predict or classify data without being
programmed after passing through a training process [17]. The training process of ML algorithms is
based on supervised and unsupervised methods. When the algorithm is trained on a labelled dataset,
the process is called supervised learning, whereas if the algorithm is trained on an unlabelled dataset,
the process is called unsupervised learning. Supervised learning involves classification and regression
tasks, whereas unsupervised learning involves clustering tasks. This study is based on classification
tasks, and the ML algorithms used in the study are explained in this section.

1)

2)

3)

Random Forest

The random forest (RF) algorithm is a type of ML algorithm that creates multiple decision trees
during the training process as its working principles; it can be used for regression or
classification tasks, and it generates different decision trees from bootstrapped samples via the
bagging technique during the training process. During the training process, some columns are
randomly removed to reduce the variance of the features [17].

Decision Tree

A decision tree (DT) is an ML algorithm that can be used for classification or regression tasks.
DT splits data into smaller portions based on certain conditions. This splitting process starts
through a series of decisions, which are called decisions. Each node tests a condition, and based
on the results of the condition, the data follow through. It continues until classification is
achieved at the end, and the DT is based on how trees are, with different branches that are
represented as nodes [18].

Multilayer Perceptron

The multilayer perceptron (MLP) is another type of ML but is an improved type of ML called
deep learning. The model mimics how the brain works; it has an input layer, one or more
hidden layers and an output. Like neurons in our brains, an MLP has nodes that are in every
layer, and each node is connected to the nodes in the next layers. Each node has its own bias
and weight. The MLP model uses a function called the activation function to make every node
produce an output, which can be called active or not activated. The MLP model has now been
regarded as a method with good performance in classification tasks [19].
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4

5)

6)

Logistic regression

Logistic regression (LR) is a type of supervised learning algorithm that is widely used in the
healthcare sector for predicting the probability of class outcomes based on independent
variables. LR assumes p as the probability of a positive outcome, while 1-p is the probability of
a negative outcome. LR uses a decision boundary to set the threshold that classifies data into
positive and negative outcomes, and the classification probability is calculated via the logistic
sigmoid function [17].

Support Vector Machine

Support vector machine (SVM) is a type of supervised learning algorithm that is used for
classification tasks. SVM works by identifying a hyperplane that best separates data into
classes, maximizing the margin between them to ensure clear boundaries. SVMs work well in
handling complex, nonlinear relationships and overfitting [20].

Gradient boosting

Gradient boosting (GB) is a type of ML algorithm that can be used for regression or
classification tasks, where it builds a predictive model by combining multiple weak learners,
starting with a simple regression tree. GB enhances its performance when these weak learners
are combined sequentially. This method reduces the loss function, which measures the
difference between actual predicted values through a step-by-step sampling procedure [21].

3.5. Performance Metrics
This section discusses the various matrices used to evaluate the performances of the ML algorithms

used.

)]

2)

3)

4)

Precision
Precision determines the ratio of correctly predicted positive outcomes to all positive outcomes
[17].

TP
To+FD

Precision = * 100% (7
Accuracy

Accuracy is defined as the percentage of the total number of correct predicted data points out of
all the data points [22].

Accuracy — __IN*TR . 10094 (8)

TN+TD+FNEFD

Recall
Recall that the ratio of true positive (TP) to all the actual positive outcomes captures all the
positive outcomes as positive [23].

Recall= ——— % 100% )

TNIT2IFNIFR

F1 score
The FI score is used to balance the precision and recall for model evaluation [9].

Flscore =2 % % = 100% (10)

4. Finding and Discussion

This section highlights the results obtained from this study. The datasets used were split into training
and testing sets, and necessary data preprocessing was carried out, such as handling missing values
with the KNN imputation technique, LabelEncoder for handling categorical values and Min—Max for
transforming the values within the range of 0--1. Table 1 highlights the environment setup utilized
during the execution of this study. The study implementation was conducted via Jupyter Notebook
with the Python programming language. The libraries used are pandas, NumPy, Sklearn, Matplotlib,
and Seaborn. The ML algorithms evaluated are GB, MLP, SVM, LR, RF, XgBoost, AdaBoost and
DT, and kernel-based PCA functions are used to explore the impact of those functions on the
performance of the ML model in predicting CKD in Database 1 (DB1) and Database 2 (DB2). The
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functions include sigmoid, cosine, polynomial, radial basis and linear functions. The evaluation

metrics used are accuracy, precision, F1 score, and recall score.

As illustrated in Figure 2, seven ML algorithms were evaluated for the prediction of CKD with
kernel functions. On the basis of their accuracies on DB1, DT with PPCA achieved its highest
accuracy of 99%, AdaBoost with PPCA and SPCA achieved its highest accuracy of 96%, the GB
model achieved its highest accuracy of 96% with PPCA, LR achieved its highest accuracy of 96%
with PCA, RF achieved its highest accuracy of 99% with PPCA, SVM achieved the highest accuracy
of 96% for all kernels, XGB achieved its highest accuracy of 97% with SPCA, and MLP achieved the
best accuracy of 100% with SPCA, followed by RF with 99% with RPCA. MLP achieved its lowest

PCA

accuracy of 97% with LPCA.

Accuracy (%)
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DT with RBF and SPCA achieved its highest accuracy of 98%, AdaBoost achieved an accuracy of
98% for all kernels, the GB model achieved its highest accuracy of 98% with PPCA and LPCA and
SPCA, RF achieved its highest accuracy of 98% with PPCA, and LR achieved its highest accuracy of
100% with RBF. The SVM achieves its highest accuracy of 100% with CPCA, and XGB achieves the
highest accuracy of 98% with PPCA, RPCA, SPCA, and CPCA, except for LPCA, which achieves the
lowest accuracy of 95%. MLP achieved the best accuracy at 100% with both RPCA and SPCA,
followed by LR and SVM, which achieved 100% accuracy with RPCA and CPCA, respectively. The
MLP achieved its lowest accuracy of 95% with RPCA and LPCA.

Figures 4 and Figure 5 provide insights into the performances and classifications of the MLP
model when trained with the kernel functions on DB1. Figure 4 visualizes the data distribution across
the two components mapped by the five-kernel PCA used in this study with the MLP on DB1. While
Figure 5 visualizes the data distribution across the two components mapped by the five-kernel PCA
used in this study with the MLP on DB2.

The mapping illustrates how each kernel function influences the separation of data points.
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Figure 4. Kernel Function PCA-Based Dimensional Space Reduction by Using Five Functions
on DB1: (a) Linear (b) Polynomial, (c) Radial Basis, (d) Sigmoid, (e) Cosine

Figure 6 presents the confusion matrix results, where further clarification was made on the impact
of each kernel on the classification accuracy.

The matrix in Figure 6 shows how the MLP achieved zero misclassifications with the kernel
function in predicting CKD on DBI, except for RPCA and LPCA, which had one misclassification of
NCKD with RPCA and one misclassification of CKD and NCKD with LPCA.

Figure 7 presents the confusion matrix results, where further clarification was made on the impact
of each kernel on the classification accuracy.

The matrix in Figure 7 shows how the MLP achieved zero misclassifications with the kernel
function in predicting CKD on DB2 except for the PPCA, SPCA and LPCA, which had one
misclassification that was not affected by the PPCA, one misclassification that was not affected by the
LPCA and one misclassification that was affected by the SPCA.
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Figure 5. Kernel Function PCA-Based Dimensional Space Reduction via five Functions
on DB2: (a) Radial Basis (b) Linear, (c¢) Polynomial, (d) Cosine, (¢) Sigmoid
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Figure 7. Confusion Matrix for All the Kernel Functions of PCA with MLP on
on DB2: (a) Radial Basis (b) Cosine, (c) Linear, (d) Sigmoid, (¢) Polynomial

Table 6 summarizes the performance achieved by the MLP in predicting CKD with the kernel
function of PCA on DBI1. The MLP achieved a good performance of 100 in terms of accuracy,
precision, recall and F1 scores with SPCA and achieved the lowest accuracy of 97% with the linear
PCA, which uses a linear function.

Table 6. Performance Metrics of The MLP With Kernel Functions on DB 1

DB1 PCA Kernels  Accuracy Precision  Recall F1 Score

MLP RBF 99% 0.98 0.98 0.98
Poly 99% 0.98 0.98 0.98

Cosine 99% 0.98 0.98 0.98

Sigmoid 100% 1.00 1.00 1.00

Linear 96% 0.96 0.96 0.96

Table 7 summarizes the performance achieved by the MLP in predicting CKD with the kernel
function of PCA on DB2. The MLP achieved a good performance of 100 in terms of accuracy,
precision, recall and F1 scores with both PPCA, CPCA, and SPCA.

Table 7. Performance Metrics of The MLP With Kernel Functions on DB 2

DB2 PCA Kernels  Accuracy Precision  Recall F1 Score

MLP RBF 99% 0.99 0.98 0.98
Poly 100% 1.00 1.00 1.00

Cosine 100% 1.00 1.00 1.00

Sigmoid 100% 1.00 1.00 1.00

Linear 97% 0.97 0.97 0.97
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Table 8 presents a comparison of the proposed model with existing methods. Some of the studies
achieved reasonable performance; however, some of the studies did not perform feature selection,
whereas the remaining studies adopted an approach that did not consider an approach that reduces
high dimensionality based on nonlinearity, which is a limitation that requires improvement. However,
none of these studies have attempted to accommodate data with nonlinear structures during
dimensionality reduction, even though nonlinear relationships between features are common in
medical datasets.

Table 8. Comparative Analysis of The Proposed Study with Existing Studies

Reference Accuracy AUC Feature Selection Model
[6] 98.54% 0.99 PCA MLP
[24] 96.48% 0.98 PCA Passive aggressive
Classifier (PCA)
[25] 99% 0.98 PCA RF
[1] 98% NA A hybrid Chi-squared Extra Trees
test (Chi2) and
Mutual Information
(MI)
[26] 98% NA - ANN
[27] 99% 100 - Rotation Forest
Proposed Model 100% 1.00 KPCA MLP

According to the results of this study, PCA with kernel functions can enhance PCA to reduce the
dimensionality of CKD features with nonlinear structures and improve the performance of predictive
models. Kernel PCA has improved the MLP model in the prediction of CKD from 96% to 100% and
97% to 100% on DB1 and DB2, respectively, and across other performance metrics, such as
precision, recall and F1 score. Owing to the inclusion of nonlinear structures among features, this
study has addressed the limitation of PCA and has shown how the accuracy of models can enhance
the prediction of disease in the real-world field, providing an efficient expansion for including
important features even if their relationship is nonlinear. Moreover, the dataset was prepared by
managing missing values with a KNN imputer and transforming the dataset for efficient training, and
the dataset was split into training and testing sets. The datasets used in the study are obtained from the
UCT repository on two datasets with 400 and 200 instances on DB1 and DB2, respectively. The study
proposed a kernel PCA with 20 components that were used for training the MLP and achieved good
performance, and eight (8) different MLs were compared and evaluated for the prediction of CKD.

5. Conclusion

This study revealed the ability of the ML model to predict CKD using a low-dimensional dataset with
features with nonlinear structures. This study employed eight ML models: RF, DT, MLP, MLP, RF,
LR, SVM and GB. A kernel function with the PCA technique was applied to two CKD datasets, and
dimensionality reduction was conducted to predict CKD. The proposed PCA with MLP performed
well and produced the best result scores by outperforming the other algorithms. Based on the results
achieved in this research, the model can be utilized for the early prediction of CKD. The future work
of this study involves exploring the new enhanced PCA to other datasets for generalization and the
development of an application that can be used in the real world for CKD prediction from patient
records and, finally, the use of RPCA on other models in different settings.
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