
     

 2025 | International Journal of Education, Science, Technology and Engineering | Volume. 8 | Issue. 2 | 58-68 

  

International Journal of Education, Science, Technology and Engineering 
p-ISSN: 2685-1458, e-ISSN: 2684-9844  

Original Research Paper 
 
Anomaly Detection Using Autoencoders for Household Electricity Meters 
 

Nattaporn Wongsuwan1*, Somchai Srisawat1, Thanakorn Kittisak1, 
Anongrat Boonmee1, Mirella Sanna1 

 
1 Department of Information Engineering, Electrical Engineering and Applied Mathematics, 

Faculty of Engineering, University of Salerno. Fisciano, Italy. 
2 Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of 

Technology Thanyaburi. Pathum Thani, Thailand.   
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Article History 
Received: 
27.11.2024 
 
Revised: 
19.06.2025 
 
Accepted: 
03.07.2025 
 
*Corresponding Author:  
Nattaporn Wongsuwan 
Email: 
wongsu.wan72@yahoo.com 
 
This is an open access article, 
licensed under: CC–BY-SA 
 

 

Abstract: Household electricity consumption often exhibits sudden and 
unexplained spikes that typically go unnoticed until the monthly bill arrives. 
These anomalies may stem from equipment malfunction, inefficient appliance 
usage, or irregular electrical patterns that households cannot easily observe. 
This study proposes an unsupervised anomaly detection framework based on 
autoencoders to identify abnormal consumption behavior from high resolution 
household electricity meter data. The model learns normal consumption 
patterns through reconstruction and flags anomalies using a dynamic 
threshold derived from reconstruction error distribution. Experimental results 
demonstrate strong detection capability, particularly for sudden spikes, 
achieving a precision of 0.92, recall of 0.88, and F1 score of 0.90. The 
findings highlight the potential of deep learning–based unsupervised methods 
to support real time, edge deployable solutions for energy efficiency and early 
fault detection in residential environments.  
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1. Introduction 
Electricity consumption within residential households represents a complex interplay of behavioral 
routines, appliance characteristics, and infrastructural conditions. Despite the central role of household 
electricity usage in national energy systems, most consumers possess limited visibility into their 
consumption dynamics [1]. This lack of granularity often results in unnoticed anomalies, which may 
manifest as unexpected surges in monthly bills and remain unexplained without advanced monitoring 
tools. Given the rising emphasis on sustainability and efficient energy use, detecting such irregularities 
has become both a practical and societal necessity [2] [3]. 

Sudden spikes in household electricity usage can emerge from a variety of sources, including 
malfunctioning appliances, poorly maintained electrical installations, or behavioral deviations from 
typical daily routines. These anomalies are often subtle in real time but accumulate substantial energy 
waste when undetected. Conventional monitoring methods typically limited to monthly billing 
statements provide insufficient temporal resolution for consumers to recognize abnormal usage 
patterns early [4]. This gap highlights the need for automated, real-time anomaly detection solutions. 

Traditional statistical and rule-based methods, such as moving averages or fixed thresholds, 
struggle to adapt to the highly nonlinear and irregular nature of household electricity consumption. 
Residential patterns fluctuate according to lifestyle shifts, weather changes, occupancy levels, and 
appliance usage schedules [5] [6]. These diverse influences produce a degree of complexity that 
renders rigid models inadequate. Thus, an approach capable of learning from the underlying structure 
of normal behavior is essential for reliable anomaly detection [7]. 

Deep learning models, particularly autoencoders, offer a promising alternative by learning compact 
representations of normal consumption patterns without requiring labeled anomaly data. By 
compressing and reconstructing input signals, autoencoders detect anomalies by measuring deviations 
in reconstruction error. This unsupervised capability is critical in household energy contexts, where 
collecting labeled anomalies is highly impractical due to the unpredictable and varied nature of 
abnormal events [8]. 

The emergence of smart meters and IoT-enabled monitoring devices has significantly expanded the 
availability of high-resolution electricity data. These technologies enable measurements at intervals as 
fine as minutes or seconds, providing rich temporal information suitable for deep learning models [9] 
[10]. Leveraging such granular datasets allows autoencoders to capture the nuanced rhythms of 
household energy dynamics, improving sensitivity to both sudden and subtle anomalies [11]. 

The household environment presents unique challenges that differentiate it from industrial or 
commercial settings. Noise, irregular usage patterns, incomplete data, and inconsistent appliance 
behavior introduce complexities that may affect model performance. Existing studies often focus on 
structured environments where consumption patterns are more predictable. As a result, there remains a 
need for dedicated research addressing anomaly detection within the inherently unpredictable 
household domain [12]. 

Beyond technical considerations, anomaly detection in household electricity consumption carries 
broader socio-economic implications. Early identification of irregular usage can reduce household 
expenditures, promote energy-efficient behaviors, and assist utility providers in minimizing 
operational inefficiencies. In this sense, anomaly detection systems can serve as tools for both 
consumer empowerment and infrastructural optimization [13] [14]. 

Energy sustainability goals further reinforce the importance of accurate anomaly detection. 
Governments, regulatory bodies, and energy providers increasingly advocate for digital transformation 
initiatives aimed at promoting transparency and reducing waste. Incorporating AI-based monitoring 
systems within residential contexts aligns with these policy objectives by supporting data-driven 
decision-making and fostering more responsible energy consumption practices [15]. 

This study addresses these opportunities and challenges by proposing an autoencoder-based 
framework optimized for household electricity consumption. The model is designed to learn normal 
usage behavior, detect deviations through reconstruction error analysis, and operate effectively under 
realistic residential conditions. By using an adaptive thresholding mechanism, the framework 
enhances detection sensitivity while minimizing false alarms [16] [17]. 

Overall, this research contributes to the growing field of AI-driven energy analytics by 
demonstrating the viability of unsupervised autoencoder models for detecting anomalies in household 
electricity data. Its findings provide a foundation for developing practical, real-time solutions capable 
of enhancing energy efficiency, reducing waste, and supporting the evolution of intelligent residential 
energy systems. 
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2. Literature Review 
2.1. Traditional Approaches to Energy Anomaly Detection 
Traditional approaches to energy anomaly detection rely heavily on statistical modeling techniques 
that assume regularity and stationarity in consumption patterns. Methods such as Moving Average, 
Exponential Smoothing, and Seasonal-Trend Decomposition of Time Series (STL) are widely used to 
approximate expected values and identify deviations. These approaches are effective in controlled 
environments but tend to struggle with chaotic or highly variable household electricity usage [18]. 

One of the earliest techniques employed in anomaly detection is the use of rule-based thresholding, 
where consumption exceeding predefined limits is flagged as abnormal. Although simple to 
implement, threshold-based systems lack adaptability, especially when user behavior or environmental 
conditions change over time. This often leads to high rates of false alarms or missed anomalies [19] 
[20]. 

Autoregressive Integrated Moving Average (ARIMA) models have been used extensively for 
predicting energy consumption due to their strength in modeling linear temporal dependencies. 
However, ARIMA assumes stationarity and struggles with non-linear dynamics that are common in 
residential energy usage, making it insufficient for detecting anomalies arising from abrupt behavioral 
changes [21]. 

Seasonal ARIMA (SARIMA) extends ARIMA by incorporating seasonal patterns, making it more 
suitable for cyclical electricity consumption data. Despite this improvement, SARIMA models are 
highly sensitive to noise and require careful parameter tuning, limiting their practicality for real-time 
applications [22] [23]. 

Statistical hypothesis testing has also been explored, where observed consumption is compared 
against expected distributions. While conceptually sound, these methods depend on strong 
assumptions about data distribution and independence, both of which are rarely satisfied in real-world 
household environments [24]. 

Clustering techniques such as K-Means and DBSCAN have been applied to detect unusual 
consumption patterns by grouping similar behavior and identifying outliers. These methods can 
capture non-linearity but require careful selection of features and cluster counts, and they often fail 
when data exhibits continuous evolution rather than distinct clusters [25]. 

Principal Component Analysis (PCA) provides another classical solution by reducing 
dimensionality and identifying anomalies in residual variance. However, PCA assumes linear 
correlations and is ineffective when dealing with complex, multi-modal household consumption 
patterns [26]. 

Time-series decomposition techniques attempt to isolate trend, seasonal, and residual components 
to facilitate anomaly detection. Although useful for understanding aggregate patterns, decomposition 
methods often fail to capture sudden local spikes characteristic of household anomalies [27]. 

Hybrid methods combining statistical forecasting and thresholding have been proposed to improve 
detection accuracy. Yet, their performance remains limited by the underlying linearity assumptions 
and lack of ability to capture diverse behavioral influences in a home setting. 

Another challenge with traditional methods is their reliance on long-term historical data to model 
normal patterns. In households with inconsistent user behavior, this requirement becomes difficult to 
satisfy, leading to inaccurate models. 

Moreover, computational limitations of some statistical methods hinder their scalability when 
applied to high-resolution smart meter data, where consumption is recorded at minute-level intervals 
[28]. Overall, while traditional methods provide foundational insights, their inability to model non-
linear, noisy, and irregular residential consumption renders them insufficient for modern anomaly 
detection needs. 
2.2. Autoencoder-Based Approaches for Anomaly Detection in Energy Systems 
Autoencoder architectures have emerged as one of the most widely used deep learning frameworks for 
anomaly detection in energy systems due to their ability to learn compact latent representations of 
normal consumption behavior. Fundamentally, an autoencoder is trained to reconstruct input data that 
follow typical patterns; anomalies are identified when reconstruction errors exceed a predefined 
threshold. This paradigm aligns naturally with the characteristics of household electricity 
consumption, which often exhibits predictable daily and seasonal cycles. By learning these 
regularities, autoencoders can highlight subtle deviations, including sudden spikes, abnormal load 
shapes, and unusual temporal correlations [29]. 

Early applications of autoencoders in the energy domain focused on industrial equipment 
monitoring, particularly in detecting faults in rotating machinery, compressors, and transformers. 
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These pioneering studies demonstrated the method’s ability to capture high-dimensional relationships 
that classical statistical models failed to represent. The success of these industrial applications 
encouraged researchers to extend autoencoder-based anomaly detection to finer-granularity settings, 
such as smart grid feeders and residential demand profiles, where the complexity and noise levels are 
significantly higher [30]. 

One of the appealing characteristics of autoencoders for energy anomaly detection is their 
flexibility. Variants such as Denoising Autoencoders (DAE) can filter out sensor noise typical in 
residential smart meters, while Sparse Autoencoders impose constraints that enhance the 
interpretability of learned features. These variants have been applied to real-world consumption 
datasets to detect abnormal patterns caused by defective appliances, faulty meters, or unexpected 
behavioral changes within households [31]. 

The increasing availability of high-resolution smart-meter data has driven the adoption of Sequence 
Models, particularly Recurrent Neural Network (RNN)-based autoencoders such as LSTM-AE and 
GRU-AE. These architectures explicitly capture temporal dependencies in energy data, enabling more 
accurate modeling of patterns like morning peak loads, nighttime basal consumption, and weekend–
weekday differences. Studies demonstrate that LSTM-based autoencoders outperform static models 
when anomalies manifest as temporal distortions rather than isolated data points [32]. 

Another important development is the use of Convolutional Autoencoders (CAE), which exploit 
local temporal correlations by treating household electricity time series as one-dimensional signals. 
CAEs have shown significant effectiveness in identifying anomalies related to abrupt load changes, 
sporadic appliance cycling, and irregular consumption bursts. Their ability to extract multi-resolution 
features also makes them suitable for detecting complex anomalies arising from multi-appliance 
interactions [33] [34]. 

Hybrid architectures combining convolutional and recurrent layers have further improved anomaly 
detection performance in residential environments. These models leverage convolutional layers for 
localized feature extraction and recurrent layers for long-term temporal modeling. Recent research 
demonstrates that such architectures reduce false positives in datasets with high variability, making 
them particularly relevant for urban households with diverse appliance ownership and behavioral 
heterogeneity [35]. 

Variational Autoencoders (VAE) represent another direction, enabling probabilistic modeling of 
household energy consumption. Instead of merely reconstructing inputs, VAEs approximate the 
underlying distribution of normal load profiles. This probabilistic perspective allows more rigorous 
anomaly scoring, especially for borderline anomalies or subtle drifts in consumption behavior. VAEs 
have been increasingly adopted in applications targeting long-term monitoring of household 
electrification programs and off-grid systems [36]. 

A growing body of work has explored attention-enhanced autoencoders, where attention 
mechanisms prioritize relevant segments of the time series. These models help disambiguate 
anomalies from legitimate variations, such as seasonal changes, occupant behavior shifts, and irregular 
appliance usage. By focusing computational resources on informative periods, attention-based 
autoencoders improve both detection accuracy and interpretability, which is critical for applications 
requiring user trust and actionable insights [37]. 

The field has also seen substantial progress in multimodal autoencoders that integrate data from 
multiple sources such as weather information, occupancy sensors, and tariff schedules. Incorporating 
contextual variables allows the detection system to differentiate between expected increases (e.g., a 
heatwave) and unexpected anomalies (e.g., malfunctioning air conditioners). Multimodal approaches 
represent a promising direction for future smart-home deployments where heterogeneous data streams 
are readily available. 

Despite their strengths, autoencoder-based methods face notable challenges. They are highly 
sensitive to training data quality, and the presence of undetected anomalies in the training set may 
corrupt the learned representation. Moreover, household electricity consumption can be inherently 
stochastic, leading to reconstruction errors even during normal operation if the model overfits or fails 
to generalize. These limitations motivate ongoing research into robust training strategies, anomaly-
injection techniques, and uncertainty quantification frameworks [38]. 

Scalability is another emerging concern, particularly as smart-meter networks expand to millions of 
users. Many advanced autoencoder variants especially hybrid and attention-based models—require 
significant computational resources, both during training and real-time inference. Consequently, recent 
studies emphasize lightweight and edge-deployable autoencoder architectures, enabling on-device 
processing to reduce latency, preserve privacy, and minimize energy consumption [39]. 
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Overall, autoencoder-based anomaly detection has evolved into a mature yet rapidly advancing 
research field, offering strong potential for improving the reliability, efficiency, and sustainability of 
household electricity systems. Its capacity to model complex consumption patterns positions it at the 
forefront of modern energy analytics. However, continued progress requires addressing 
methodological limitations, integrating contextual data, and ensuring interpretability for end users and 
grid operators alike [40]. 
 
3. Methodology 
The methodology begins with a comprehensive preprocessing pipeline applied to minute-level 
household electricity consumption data. Missing values are interpolated using linear smoothing, and 
sensor-induced outliers are removed to prevent false anomaly signatures. The cleaned time series is 
then normalized using Min-Max scaling to stabilize model convergence. To capture temporal 
dependencies, a sliding-window segmentation strategy divides the continuous signal into 60-minute 
windows with a 15-minute stride, enriching the dataset while preserving short-term consumption 
dynamics. 

The anomaly detection framework is built around a symmetric autoencoder designed to learn latent 
representations of normal consumption behavior. The encoder compresses each window into a low-
dimensional latent vector, while the decoder reconstructs the original signal. Hyperparameters 
including latent dimension size, batch size, activation functions, and learning rate were optimized 
using grid search to maximize reconstruction fidelity. Dropout and L2 regularization were 
incorporated to reduce overfitting, especially during high-variability consumption periods. 

Model performance was evaluated using two datasets: 
1) normal consumption data, and 
2) data augmented with synthetic anomalies representing appliance malfunctions and abrupt load 

surges.  
 
 
 

Tabel 1. Workflow Table 
 

Step Process Description 

1 Data Collection Minute-level household electricity 
consumption is collected from smart meters. 

2 Data Preprocessing Missing values interpolated, outliers 
smoothed, data normalized using Min–Max 
scaling. 

3 Sliding Window Segmentation Time series segmented into 60‑minute 
windows with 15‑minute stride. 

4 Model Design Autoencoder constructed with symmetric 
encoder–decoder architecture. 

5 Model Training Trained using MSE loss and Adam optimizer; 
hyperparameters tuned via grid-search. 

6 Reconstruction Error Computation Error between original and reconstructed 
signals calculated for every window. 

7 Adaptive Thresholding Gaussian-based dynamic threshold applied to 
determine anomalies. 

8 Evaluation Metrics (Precision, Recall, F1, ROC-AUC) 
computed using normal + synthetic anomaly 
datasets. 

9 Deployment Design Edge-device integration proposed for real-time 
inference and privacy preservation. 

 
 
 

Precision, Recall, F1-score, and ROC-AUC were used to quantify detection performance, while 
temporal localization accuracy assessed how precisely the model marked the onset of anomalies. 
Baseline comparisons with ARIMA, Holt–Winters, and z-score detection demonstrated that the 
autoencoder outperforms traditional statistical methods on nonlinear, irregular household patterns. 
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4. Finding and Discussion 
This section presents a comprehensive evaluation of the proposed Autoencoder-based anomaly 
detection system. The discussion covers the experimental setup, the analysis of reconstruction 
capabilities, quantitative performance metrics, a comparative study against traditional baselines, and a 
critical look at the current limitations. 
 
4.1. Experimental Setup 
The experiments were conducted in a controlled computational environment designed to handle high-
resolution time-series data. We utilized a workstation equipped with an Intel Core i7 processor and an 
NVIDIA GPU to accelerate the training of the deep neural network. The software stack was built upon 
Python 3.8, leveraging the PyTorch framework for model architecture and gradient descent 
optimization. This setup ensured that the training process was both efficient and reproducible, 
allowing for rapid iteration of hyperparameter tuning. 

The dataset employed for this study consists of real-world residential electricity consumption data 
collected at one-minute intervals. This high granularity is essential for detecting transient anomalies 
that might be smoothed out in hourly or daily aggregates. The raw data underwent rigorous 
preprocessing, including the imputation of missing values using linear interpolation to maintain 
temporal continuity. Furthermore, the data was normalized using Min-Max scaling to map the 
consumption values to a range of [0, 1], which is crucial for the stability of the sigmoid activation 
functions used in the output layer of the Autoencoder. 

To evaluate the model's robustness, the dataset was partitioned into a training set (70%) and a 
testing set (30%). The training set consisted exclusively of "normal" consumption patterns to allow the 
Autoencoder to learn the baseline behavior of the household. This unsupervised approach is 
particularly advantageous in the energy domain, where labeled anomaly data is scarce. The testing set, 
however, contained a mix of normal data and synthetic anomalies, providing a realistic scenario for 
performance evaluation. 

Synthetic anomalies were injected into the test set to simulate various types of energy leakage and 
equipment faults. These included sudden spikes representing short circuits or motor start-up failures, 
as well as prolonged elevated consumption representing resistive leakage or appliances left running 
unintentionally. The magnitude and duration of these anomalies were varied stochastically to test the 
model's sensitivity across a spectrum of fault severities. This injection strategy allows for a more 
controlled assessment of Recall and Precision compared to relying solely on rare, naturally occurring 
anomalies. 

The Autoencoder architecture itself was tuned through a grid search process. We experimented 
with different latent vector sizes, finding that a bottleneck dimension of 8 provided the best trade-off 
between compression and reconstruction quality. The model used a symmetric encoder-decoder 
structure with three hidden layers on each side. The Rectified Linear Unit (ReLU) activation function 
was applied to the hidden layers to mitigate the vanishing gradient problem, ensuring efficient learning 
of complex non-linear patterns. 

Optimization was performed using the Adam optimizer, chosen for its adaptive learning rate 
capabilities, with an initial learning rate set to 0.001. The Mean Squared Error (MSE) served as the 
loss function, quantifying the difference between the input time-window and the reconstructed output. 
The model was trained for 100 epochs with a batch size of 64, using early stopping to prevent 
overfitting. The training loss converged effectively, indicating that the model successfully learned the 
underlying manifold of the normal consumption data. 

We implemented a sliding window approach for data ingestion, with a window size of 60 minutes 
and a stride of 15 minutes. This segmentation strategy captures the temporal context necessary for the 
model to understand short-term dependencies. By feeding the model overlapping sequences, we 
ensured that anomalies occurring at the boundaries of a window were not missed. The reconstruction 
error was then calculated for each window, forming the basis for the anomaly score. 

Finally, the evaluation metrics were carefully selected to provide a holistic view of performance. 
We utilized Precision, Recall, F1-Score, and the Area Under the Receiver Operating Characteristic 
Curve (ROC-AUC). These metrics are standard in anomaly detection literature and provide a clear 
indication of the model's ability to minimize false alarms while maximizing detection rates. The 
threshold for anomaly detection was determined dynamically, rather than statically, to adapt to the 
inherent noise in the data. 
 
 



Nattaporn Wongsuwan, Somchai Srisawat, Thanakorn Kittisak, Anongrat Boonmee, Mirella Sanna. 
Anomaly Detection Using Autoencoders for Household Electricity Meters. 
International Journal of Education, Science, Technology and Engineering, vol. 8, no. 2, pp. 58-68, December 2025. DOI: 10.36079/lamintang.ijeste-0802.777 
 
 

64 

4.2. Reconstruction Analysis and Thresholding 
The fundamental premise of this study is that an Autoencoder trained on normal data will fail to 
accurately reconstruct anomalous patterns. Our analysis confirms this hypothesis. During normal 
operation periods, the model's reconstructed output closely mirrored the input signal. The 
reconstruction error (MSE) remained consistently low, hovering near zero, which demonstrates that 
the latent representation successfully captured the regular cyclic patterns of household appliances and 
daily routines. 

In contrast, when the model encountered the injected anomalies, the reconstruction error spiked 
significantly. The Autoencoder attempted to compress the anomalous input into the learned latent 
space of "normal" behaviors. Since the anomaly did not conform to the learned rules, the 
decompression (decoding) process resulted in a distorted output that differed largely from the input. 
This discrepancy generated a high MSE signal, serving as a distinct indicator of an abnormal event. 

Visual inspection of the signal plots further validates this behavior. Figure 4 (in the manuscript) 
displays the overlay of the original and reconstructed signals. It is evident that for routine activities—
such as the refrigerator cycling or lights being toggled—the reconstruction overlaps almost perfectly 
with the ground truth. However, at the timestamps where synthetic spikes were introduced, the 
reconstructed line remains flat or follows the expected normal trend, leaving a large visible gap (error) 
between the actual and predicted values. 

A critical component of our analysis is the thresholding mechanism. Traditional static thresholds 
are often insufficient for electricity data due to its high variance. A fixed value might be too high for 
low-consumption periods (missing anomalies) or too low for peak periods (causing false alarms). To 
address this, we analyzed the distribution of reconstruction errors from the validation set. The 
distribution followed a log-normal pattern, prompting the use of statistical thresholding. 

We implemented an adaptive threshold defined as the mean of the reconstruction error plus three 
standard deviations ($\mu + 3\sigma$). This dynamic limit accommodates natural fluctuations in the 
household's baseload. By calculating this threshold over a rolling window, the system adapts to long-
term changes in consumption behavior, such as seasonal shifts from winter to summer, without 
requiring manual recalibration. 

The effectiveness of this Gaussian-based thresholding is evident in the reduction of false positives. 
In initial tests with a static threshold, normal high-load events (like using an electric oven) were often 
flagged as anomalies. The adaptive approach correctly identified these as "normal high usage" because 
their reconstruction error, while higher than baseline, did not statistically deviate enough to breach the 
dynamic limit. This distinction is vital for user acceptance in a real-world residential product. 

We analyzed the sensitivity of the reconstruction error to different types of anomalies. The model 
showed the highest sensitivity to "point anomalies" (sudden, sharp spikes). The MSE response to these 
events was immediate and high magnitude. "Contextual anomalies," such as an appliance running at 
an odd time but with normal wattage, resulted in lower but still detectable error elevations, proving the 
model learns temporal context, not just amplitude. 

Extremely subtle anomalies, such as very low-ampere leakage, sometimes resulted in 
reconstruction errors that fell within the "noise" margin of the threshold. This indicates a trade-off 
between sensitivity and false alarm suppression. While tightening the threshold ($\mu + 2\sigma$) 
increases detection of subtle faults, it exponentially increases false positives. The chosen $\mu + 
3\sigma$ parameter represents the optimal balance for general residential monitoring. 

In summary, the reconstruction analysis confirms that the Autoencoder acts as an effective filter 
for normalcy. The error signal provides a high-fidelity proxy for abnormality. The combination of 
deep learning-based reconstruction and statistical adaptive thresholding creates a robust detection 
mechanism that filters out the noise of daily life while highlighting genuine irregularities in energy 
consumption. 

 
4.3. Quantitative Performance 
The quantitative evaluation of the proposed model yields promising results, substantiated by rigorous 
metric analysis. The model achieved an overall Precision of 0.92. This high precision score is 
particularly significant in the context of residential monitoring. It implies that when the system alerts a 
user to a potential leak or fault, there is a 92% probability that the alert is genuine, minimizing the 
"boy who cried wolf" effect that often plagues home security and monitoring systems. 

The Recall (Sensitivity) of the model was recorded at 0.88. This indicates that the system 
successfully identified 88% of all injected anomalies. While slightly lower than the precision, this is a 
strong result given the diversity of the anomalies introduced. The missed cases (false negatives) were 
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primarily low-magnitude anomalies that blended into the background noise of the sensor data. In a 
practical safety context, capturing nearly 90% of faults without calibration is a substantial 
improvement over unmonitored system. 

The F1-Score, which creates a harmonic mean between Precision and Recall, stood at 0.90. This 
balanced score confirms that the model does not disproportionately favor one metric over the other. In 
many anomaly detection tasks, it is easy to achieve 100% recall by flagging everything as an anomaly, 
or 100% precision by only flagging the most obvious extreme events. An F1-Score of 0.90 
demonstrates that our model maintains a healthy equilibrium, making it reliable for continuous 
deployment. 

The Area Under the Curve (ROC-AUC) score was 0.94, indicating excellent separability between 
the positive (anomalous) and negative (normal) classes. A score closer to 1.0 represents a perfect 
classifier. The 0.94 result suggests that the reconstruction error distributions for normal and anomalous 
data are distinct and well-separated, validating the choice of Autoencoder architecture for feature 
extraction. 

We also analyzed the False Positive Rate (FPR), which remained below 5% throughout the testing 
phase. Keeping the FPR low is critical for scalability. If deployed across thousands of smart meters, a 
high FPR would overwhelm utility providers with support calls. The low FPR achieved here is largely 
attributed to the robust feature learning of the encoder, which effectively ignores sensor noise that 
would typically trigger simple threshold-based alarms. 

Temporal localization accuracy was another aspect of our quantitative assessment. We measured 
the time delay between the onset of an anomaly and its detection. The average detection latency was 
found to be within the 15-minute stride of the sliding window. While not instantaneous, this near-real-
time performance is sufficient for residential energy management, where the goal is to stop persistent 
leakage or identify faulty appliances before the next billing cycle. 

We further dissected the performance based on anomaly duration. The model performed best on 
short-duration, high-intensity anomalies (Precision > 0.95). Performance dropped slightly for long-
duration, low-intensity anomalies (Precision ~ 0.85). This variance highlights the model's reliance on 
"change" or "deviation" from the norm; anomalies that slowly become the new norm are harder to 
detect without a longer memory mechanism. 

Overall, the quantitative data confirms that the Deep Learning approach provides a high degree of 
reliability. The metrics surpass the typical performance of consumer-grade energy monitors which rely 
on simple power limits. The statistical validation provides a strong confidence level for the feasibility 
of deploying this algorithm in commercial smart metering infrastructure. 

 
4.3. Comparative Analysis 
To benchmark the effectiveness of our Deep Learning framework, we compared it against two 
established traditional methods: ARIMA (Autoregressive Integrated Moving Average) and a Z-Score 
based statistical method. These baselines represent the standard approaches currently used in many 
industrial time-series applications. The comparison highlights the specific advantages of using neural 
networks for the complex domain of residential energy. 

The ARIMA model, while powerful for linear forecasting, showed significant limitations in this 
study. It achieved a Precision of only 0.74 and a Recall of 0.68. The primary failure mode of ARIMA 
was its inability to handle the non-linear, abrupt changes typical of human behavior (e.g., turning on 
multiple appliances simultaneously). ARIMA assumes a level of stationarity and linear correlation that 
simply does not exist in minute-level household data, leading to a high rate of false alarms during peak 
usage hours. 

The Z-Score method, which relies on simple statistical deviations from the mean, performed even 
more poorly with an F1-Score of 0.65. This method assumes that the data follows a normal 
distribution. However, household electricity consumption is often multi-modal (having multiple 
"normal" states, such as "nobody home," "evening activity," and "night sleep"). The Z-Score method 
struggled to differentiate between a "normal high peak" and an "anomaly," proving it is too simplistic 
for this application. 

In contrast, our Autoencoder outperformed both baselines significantly across all metrics. The key 
differentiator is the Autoencoder's ability to learn a non-linear latent representation. It essentially 
memorizes the complex "shape" of daily routines rather than just the mathematical average. This 
allows it to understand that a spike at 7:00 PM is normal (cooking dinner), whereas a similar spike at 
3:00 AM is anomalous, a context that Z-Score methods completely miss. 
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Another comparative advantage is adaptability. The ARIMA model required frequent re-training 
and parameter tuning (p, d, q values) to maintain performance as seasons changed. The Autoencoder, 
once trained on a representative dataset, showed greater generalization capabilities. It remained robust 
even when minor shifts in daily schedules occurred, whereas the rigid mathematical structure of 
ARIMA flagged these shifts as errors. 

In terms of computational efficiency during inference, the Z-Score method is naturally the fastest, 
followed by the Autoencoder, with ARIMA being the most computationally intensive due to the 
iterative nature of its forecasting steps. Although the Autoencoder requires heavy computation during 
training, its inference (forward pass) is essentially a matrix multiplication operation, making it 
surprisingly efficient and faster than ARIMA for real-time detection on edge devices. 

We also compared the robustness to noise. When we added Gaussian noise to the test data to 
simulate sensor degradation, the performance of the Z-Score and ARIMA models degraded linearly. 
The Autoencoder, however, acted as a "Denoising Autoencoder" to some extent. Its performance 
degraded much more slowly, proving that the neural network focuses on the structural patterns of the 
data rather than the raw pixel-level values.  

The comparative analysis clearly establishes the superiority of the Autoencoder for this specific 
domain. While statistical methods are sufficient for aggregated, smooth data (like monthly grid load), 
the chaotic and granular nature of individual household data requires the feature extraction capabilities 
of Deep Learning. The 20-25% improvement in F1-Score over traditional methods justifies the 
increased complexity of the neural network approach. 

Ultimately, this comparison validates the shift towards AI-driven analytics in the smart grid sector. 
The failure of linear models to capture the intricacies of human energy consumption underscores why 
previous generations of smart meters failed to provide actionable anomaly insights, and why deep 
learning represents the necessary evolution of the technology. 

Despite the strong performance demonstrated in the experiments, several limitations inherent to 
the proposed methodology must be acknowledged. First and foremost is the issue of "Concept Drift." 
Household energy patterns are not static; they evolve over time due to family growth, new appliance 
purchases, or lifestyle changes. A model trained on data from 2023 may flag normal behavior in 2024 
as anomalous if the household buys an electric vehicle. The current model lacks an online learning 
module to update itself automatically, requiring periodic retraining. 

Secondly, the detection of "Gradual Drifts" remains a weakness. The model excels at identifying 
sudden spikes or drops (point anomalies). However, a resistive fault that causes energy usage to creep 
up by 1% per week might go undetected for a long time. The reconstruction error for such a slow 
change would increase incrementally, potentially staying within the adaptive threshold' 
 
5. Conclusion 
This study demonstrates that autoencoder-based anomaly detection provides an effective and scalable 
method for identifying irregularities in household electricity consumption. By learning the latent 
structure of normal load patterns, the model can reliably distinguish abnormal deviations such as 
sudden spikes, equipment malfunctions, or unexpected usage behaviors. The reconstruction-error 
framework proves particularly suitable for residential environments where consumption patterns vary 
yet remain rhythmically structured over time. 
The adaptive thresholding mechanism significantly strengthens the practical deployment potential of 
the method. Household energy data often contain noise, daily fluctuations, and occasional 
irregularities that are not true anomalies. The adaptive threshold accounts for these natural variations 
while minimizing false positives, thereby enhancing the reliability of anomaly detection in real-world 
settings. Combined with appropriate preprocessing—such as smoothing and handling missing 
values—the system maintains stable performance across diverse household profiles. 
Overall, the findings contribute both technical and practical insights into the development of 
intelligent energy-monitoring systems. The proposed autoencoder model is lightweight, unsupervised, 
and suitable for integration into smart meters or edge-computing devices. Future research may 
incorporate explainable AI to interpret anomaly types, develop seasonally aware detection models, and 
optimize architectures for low-power embedded hardware. These advancements will support the 
evolution of smarter, safer, and more energy-efficient households. 
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