Clay and Clay Minerals: A Detailed Review
Abstract
In this study, we focused on the presentation of clay minerals, their conditions of formation and their different categories. We also reported the importance of purification in removing impurities and the responses induced by heat treatment of these minerals. Techniques used to detect clay minerals are also exposed. On the other hand, the mineralogical, physicochemical and thermal properties have a direct impact on the field of use of these minerals. These properties differ from one mineral to another, depending on the structure and chemical composition. Moreover, the remarkable properties of smectites make these minerals the most preferred for the industry and also in the environmental field. Due to their brilliant firing properties, illites are suitable for the construction industry. Moreover, the purification by acids (acetic acid and HCl) allows the removal of most associated minerals, and thus a secure access to the clays' characteristics and a very strong sensitization even to the small variation. Finally, the ethylene glycol (EG) swelling test only affects the basal distance of smectites, increasing this distance to 17 Å, but heating to 500°C destroys kaolinite, and closes the basal distance of smectites and vermiculites to 10 Å. Illites and chlorites show no response to these two treatments (EG, heating to 500°C).
Downloads
References
I. A. Shabtai, L. M. Lynch, and Y. G. Mishael, “Designing clay-polymer nanocomposite sorbents for water treatment: A review and meta-analysis of the past decade,” Water Res., p. 116571, 2020, doi: 10.1016/j.watres.2020.116571.
F. Bergaya, B. K. G. Theng, and G. Lagaly, Handbook of Clay Science. First Edition, Elsevier Sciences, 2006.
P. B. Arab, T. P. Araújo, and O. J. Pejon, “Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests.,” Appl. Clay Sci., vol. 114, pp. 133–140, 2015, doi: 10.1016/j.clay.2015.05.020.
H. Celik, “Technological characterization and industrial application of two Turkish clays for the ceramic industry,” Appl. Clay Sci., vol. 50, no. 2, pp. 245–254, 2010, doi: 10.1016/j.clay.2010.08.005.
J. da Silva Favero et al., “Physical and chemical characterization and method for the decontamination of clays for application in cosmetics,” Appl. Clay Sci., vol. 124, pp. 252–259, 2016, doi: 10.1016/j.clay.2016.02.022.
S. Gamoudi and E. Srasra, “Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications,” Appl. Clay Sci., vol. 146, pp. 162–166, 2017, doi: 10.1016/j.clay.2017.05.036.
O. Gencel, E. Erdugmus, M. Sutcu, and O. H. Oren, “Effects of concrete waste on characteristics of structural fired clay bricks,” Constr. Build. Mater., vol. 255, p. 119362, 2020, doi: 10.1016/j.conbuildmat.2020.119362.
A. Kumar and P. Lingfa, “Sodium bentonite and kaolin clays: Comparative study on their FT-IR, XRF, and XRD Proceedings,” Mater. Today Proc., vol. 22, pp. 737–742, 2020, doi: 10.1016/j.matpr.2019.10.037.
M. Milošević, P. Dabić, S. Kovač, L. Kaluđerović, and M. Logar, “Mineralogical study of clays from Dobrodo, Serbia, for use in ceramics,” Clay Miner., vol. 54, no. 4, pp. 369–377, 2019, doi: 10.1180/clm.2019.49.
D. Muheise-Araalia and S. Pavia, “Properties of unfired, illitic-clay bricks for sustainable construction,” Constr. Build. Mater., vol. 268, p. 121118, 2021, doi: 10.1016/j.conbuildmat.2020.121118.
E. J. Serge, J. P. Alla, P. D. B. Belibi, K. J. Mbadcam, and N. N. Fathima, “Clay/polymer nanocomposites as filler materials for leather,” J. Clean. Prod., vol. 237, p. 117837, 2019, doi: 10.1016/j.jclepro.2019.117837.
M. das Graças Silva-Valenzuela, M. M. Chambi-Peralta, I. J. Sayeg, F. M. de Souza Carvalho, S. H. Wang, and F. R. Valenzuela-Díaz, “Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics,” Appl. Clay Sci., vol. 155, pp. 111–119, 2018, doi: 10.1016/j.clay.2018.01.011.
L. Zhou et al., “Efficient inhibition of montmorillonite swelling through controlling flexibly structure of piperazine-based polyether Gemini quaternary ammonium salts,” Chem. Eng. J., vol. 383, p. 123190, 2020, doi: 10.1016/j.cej.2019.123190.
P. Lv, C. Liu, and Z. Rao, “Review on clay mineral-based form-stable phase change materials: preparation, characterization and applications,” Renew. Sustain. Energy Rev., no. 68, pp. 707–726, 2017, doi: 10.1016/j.rser.2016.10.014.
S. Selmani et al., “Physical–chemical characterization of Tunisian clays for the synthesis of geopolymers materials,” J. African Earth Sci., vol. 103, pp. 113–120, 2015, doi: 10.1016/j.jafrearsci.2014.12.009.
C. V Lazaratou, D. V Vayenas, and D. Papoulis, “The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review,” Appl. Clay Sci., vol. 185, p. 105377, 2020, doi: 10.1016/j.clay.2019.105377.
E. Kentsa, C. F. Abi, H. M. Ngomo, J. N. Ndi, S. Awad, and J. K. Mbadcam, “Characterization of Akilbenza clay from Cameroon and its performance for the removal of copper (II) ions from aqueous solution,” Environ. Sci. Pollut. Res., vol. 27, no. 29, pp. 36487–36497, 2020, doi: 10.1007/s11356-020-09502-9.
M. Belghazdis, E. Hachem, and A. Bendouch, “Natural Clays from Morocco : Potentials and Applications,” J. Sustain. Sci. Manag., vol. 17, no. 2, pp. 240–254, 2022, doi: 10.46754/jssm.2022.02.017.
K. Jlassi, I. Krupa, and M. M. Chehimi, “Overview: clay preparation, properties, modification,” Clay-polymer nanocomposites, pp. 1–28, 2017, doi: 10.1016/B978-0-323-46153-5.00001-X.
V. K. Mishra and R. H. Patel, “Synthesis and characterization of branched polyether ester urethanes/organo-clay nanocomposites,” Prog. Org. Coatings, vol. 139, p. 105431, 2020, doi: 10.1016/j.porgcoat.2019.105431.
O. M. Sanusi, A. Benelfellah, and N. A. Hocine, “Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites–A review,” Appl. Clay Sci., vol. 185, p. 105408, 2020, doi: 10.1016/j.clay.2019.105408.
S. Ghyati, S. Kassou, M. El Jai, and M. Benhamou, “Investigation of PEG4000/Natural clay-based hybrids: Elaboration, characterization and theory,” Mater. Chem. Phys., vol. 239, p. 121993, 2020, doi: 10.1016/j.matchemphys.2019.121993.
S. Saja et al., “Fabrication of low-cost ceramic ultrafiltration membrane made from bentonite clay and its application for soluble dyes removal,” J. Eur. Ceram. Soc., vol. 40, no. 6, pp. 2453–2462, 2020, doi: 10.1016/j.jeurceramsoc.2020.01.057.
D. Kodali, M. J. Uddin, E. A. Moura, and V. K. Rangari, “Mechanical and thermal properties of modified Georgian and Brazilian clay infused biobased epoxy nanocomposites.,” Mater. Chem. Phys., vol. 257, p. 123821, 2021, doi: 10.1016/j.matchemphys.2020.123821.
S. Laribi, J. M. Fleureau, J. L. Grossiord, and N. Kbir-Ariguib, “Effect of pH on the rheological behavior of pure and interstratified smectite clays,” Clays Clay Miner., vol. 54, no. 1, pp. 29–37, 2006, doi: 10.1346/CCMN.2006.0540104.
A. S. Özcan, B. Erdem, and A. Özcan, “Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite,” J. Colloid Interface Sci., vol. 280, no. 1, pp. 44–54, 2004, doi: 10.1016/j.jcis.2004.07.035.
M. Monsif et al., “Chemical-physical and mineralogical characterization of ceramic raw materials from Moroccan northern regions: Intriguing resources for industrial applications,” Appl. Clay Sci., vol. 182, p. 105274, 2019, doi: 10.1016/j.clay.2019.105274.
B. Sarkar, R. Rusmin, U. C. Ugochukwu, R. Mukhopadhyay, and K. M. Manjaiah, “Modified clay minerals for environmental applications,” Modif. Clay Zeolite Nanocomposite Mater. Elsevier, pp. 113–127, 2019, doi: 10.1016/B978-0-12-814617-0.00003-7.
A. Kenane et al., “Synthesis and characterization of conducting aniline and o-anisidine nanocomposites based on montmorillonite modified clay,” Appl. Clay Sci., vol. 184, p. 105395, 2020, doi: 10.1016/j.clay.2019.105395.
R. Mukhopadhyay et al., “Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment,” J. Hazard. Mater., vol. 383, pp. 121–125, 2020, doi: 10.1016/j.jhazmat.2019.121125.
G. Zhuang, Z. Zhang, S. Peng, J. Gao, F. A. Pereira, and M. Jaber, “The interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids. 67(3), .,” Clays Clay Miner., vol. 67, no. 3, pp. 190–208, 2019, doi: 10.1007/s42860-019-00017-0.
C. W. Chiu, T. K. Huang, Y. C. Wang, B. G. Alamani, and J. J. Lin, “Intercalation strategies in clay/polymer hybrids. Science,” Prog. Polym., vol. 39, no. 3, pp. 443–485, 2014, doi: 10.1016/j.progpolymsci.2013.07.002.
R. M. S. Júnior, T. A. de Oliveira, L. M. Araque, T. S. Alves, L. H. de Carvalho, and R. Barbosa, “Thermal behavior of biodegradable bionanocomposites: influence of bentonite and vermiculite clays,” J. Mater. Res. Technol., vol. 8, no. 3, pp. 3234–3243, 2019, doi: 10.1016/j.jmrt.2019.05.011.
S. M. Lee and D. Tiwari, “Hybrid materials precursor to natural clay in the attenuation of bisphenol A from aqueous solutions,” J. Water Process Eng., vol. 11, pp. 46–54, 2016, doi: 10.1016/j.jwpe.2016.03.007.
J. Madejová, “FTIR techniques in clay mineral studies,” Vib. Spectrosc., vol. 31, no. 1, pp. 1–10, 2003, doi: 10.1016/S0924-2031(02)00065-6.
S. M. Shaikh, M. S. Nasser, I. Hussein, A. Benamor, S. A. Onaizi, and H. Qiblawey, “Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: A comprehensive review,” Sep. Purif. Technol., vol. 187, pp. 137–161, 2017, doi: 10.1016/j.seppur.2017.06.050.
F. Hernot, “L’argile, son utilisation à l’officine,” Doctoral dissertation, Univer. Angers, France, 2016.
L. Mahouachi, T. Rastogi, W. U. Palm, I. Ghorbel-Abid, D. B. H. Chehimi, and K. Kümmerer, “Natural clay as a sorbent to remove pharmaceutical micropollutants from wastewater,” Chemosphere, vol. 258, p. 127213, 2020, doi: 10.1016/j.chemosphere.2020.127213.
P. Podsiadlo, B. S. Shim, and N. A. Kotov, “Polymer/clay and polymer/carbon nanotube hybrid organic–inorganic multilayered composites made by sequential layering of nanometer scale films,” Coord. Chem. Rev., vol. 253, no. 23–24, pp. 2835–2851, 2009, doi: 10.1016/j.ccr.2009.09.004.
A. M. Awad et al., “Adsorption of organic pollutants by natural and modified clays: a comprehensive review,” Sep. Purif. Technol., vol. 228, p. 115719, 2019, doi: 10.1016/j.seppur.2019.115719.
M. Gautier, “Interactions entre argile ammoniée et molécules organiques dans le contexte du stockage des déchets. Cas de molécules à courtes chaînes,” (Doctoral dissertation, Université d’Orléans, France), 2008.
L. Le Pluart, J. Duchet, H. Sautereau, P. Halley, and J. F. Gerard, “Rheological properties of organoclay suspensions in epoxy network precursors,” Appl. Clay Sci., vol. 25, no. 3–4, pp. 207–219, 2004, doi: 10.1016/j.clay.2003.11.004.
G. O. Ihekweme, J. N. Shondo, K. I. Orisekeh, G. M. Kalu-Uka, I. C. Nwuzor, and A. P. Onwualu, “Characterization of certain Nigerian clay minerals for water purification and other industrial applications,” Heliyon, vol. 6, no. 4, p. e03783, 2020, doi: 10.1016/j.heliyon.2020.e03783.
S. M. Lee and D. Tiwari, “Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview,” Appl. Clay Sci., vol. 59, pp. 84–102, 2012, doi: 10.1016/j.clay.2012.02.006.
R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, and H. He, “Adsorbents based on montmorillonite for contaminant removal from water: A review,” Appl. Clay Sci., vol. 123, pp. 239–258, 2016, doi: 10.1016/j.clay.2015.12.024.
D. Merabet and H. Belkacemi, “Caractérisation minéralogique et chimique du kaolin de Tamazert (Algérie),” Ann. Chim. Sci. des Matériaux, vol. 28, no. 5, pp. 61–83, 2003, doi: 10.1016/S0151-9107(03)00107-7.
N. Cousin, Argile, éditions Eyrolles, dépôt légal. ISBN : 978-2-212-55642-1, 2013.
S. Sadjadi, “Halloysite-based hybrids/composites in catalysis,” Appl. Clay Sci., vol. 189, p. 105537, 2020, doi: 10.1016/j.clay.2020.105537.
R. Delgado et al., “The quality of Spanish cosmetic-pharmaceutical talcum powders,” Appl. Clay Sci., vol. 193, p. 105691, 2020, doi: 10.1016/j.clay.2020.105691.
H. Wan et al., “Montmorillonite: A structural evolution from bulk through unilaminar nanolayers to nanotubes,” Appl. Clay Sci., vol. 194, p. 105695, 2020, doi: 10.1016/j.clay.2020.105695.
S. Ismadji, F. E. Soetaredjo, and A. Ayucitra, “Clay materials for environmental remediation,” Berlin, Ger. Springer Int. Publ., 2015.
D. Wetshondo Osomba, “Caractérisation et valorisation des matériaux argileux de la province de Kinshasa (RD Congo),” Doctoral dissertation, Univer. Liege, Liege, Belgium, 2012.
R. S. Gueye et al., “Mineralogical and physico-chemical characterization of Mbodiene palygorskite for pharmaceutical applications,” J. African earth Sci., vol. 135, pp. 186–203, 2017, doi: 10.1016/j.jafrearsci.2017.08.019.
D. Wang, J. Li, X. Zhang, J. Zhang, J. Yu, and J. Zhang, “Poly (propylene carbonate)/clay nanocomposites with enhanced mechanical property, thermal stability and oxygen barrier property,” Compos. Commun., vol. 22, p. 100520, 2020, doi: 10.1016/j.coco.2020.100520.
C. C. Shen, S. Petit, C. J. Li, C. S. Li, N. Khatoon, and C. H. Zhou, “Interactions between smectites and polyelectrolytes,” Appl. Clay Sci., vol. 198, p. 105778., 2020, doi: 10.1016/j.clay.2020.105778.
R. B. Valapa, S. Loganathan, G. Pugazhenthi, S. Thomas, and T. O. Varghese, “An overview of polymer–clay nanocomposites,” Clay-Polymer Nanocomposites, pp. 29–81, 2017, doi: 10.1016/B978-0-323-46153-5.00002-1.
A. Kausar, M. Iqbal, A. Javed, K. Aftab, H. N. Bhatti, and S. Nouren, “Dyes adsorption using clay and modified clay: a review,” J. Mol. Liq., vol. 256, pp. 395–407, 2018, doi: 10.1016/j.molliq.2018.02.034.
S. S. Gaur, P. Dhar, S. Narendren, S. Sakurai, A. Kumar, and V. Katiyar, “Fabrication and characterization of clay nanoscrolls and stable zerovalent iron using montmorillonite,” Appl. Clay Sci., vol. 193, p. 105670, 2020, doi: 10.1016/j.clay.2020.105670.
H. J. Ryu, N. T. Hang, J. H. Lee, J. Y. Choi, G. Choi, and J. H. Choy, “Effect of organo-smectite clays on the mechanical properties and thermal stability of EVA nanocomposites,” Appl. Clay Sci., vol. 196, p. 105750, 2020, doi: 10.1016/j.clay.2020.105750.
J. Cui, Z. Zhang, and F. Han, “Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay,” Appl. Clay Sci., vol. 190, p. 105543, 2020, doi: 10.1016/j.clay.2020.105543.
G. M. C. Alwis, N. Kottegoda, and U. N. Ratnayake, “Facile exfoliation method for improving interfacial compatibility in montmorillonite-natural rubber nanocomposites: A novel charge inversion approach.,” Appl. Clay Sci., vol. 191, p. 105633, 2020, doi: 10.1016/j.clay.2020.105633.
H. Yan et al., “Synthesis and assessment of CTAB and NPE modified organo-montmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation,” Colloids Surfaces B Biointerfaces, vol. 191, p. 110983, 2020, doi: 10.1016/j.colsurfb.2020.110983.
A. H. Jawad and A. S. Abdulhameed, “Mesoporous Iraqi red kaolin clay as an efficient adsorbent for methylene blue dye: adsorption kinetic, isotherm and mechanism study,” Surfaces and Interfaces, vol. 18, p. 100422, 2020, doi: 10.1016/j.surfin.2019.100422.
A. B. Karim, B. Mounir, M. Hachkar, M. Bakasse, and A. Yaacoubi, “Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay,” J. Hazard. Mater., vol. 168, no. 1, pp. 304–309, 2009, doi: 10.1016/j.jhazmat.2009.02.028.
L. Bouna et al., “Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay,” Appl. Clay Sci., vol. 196, p. 105764, 2020, doi: 10.1016/j.clay.2020.105764.
H. Murray, Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskite sepiolite, and common clays. 2007.
D. Lahcen et al., “Applied Clay Science Characteristics and ceramic properties of clayey materials from Amezmiz region ( Western High Atlas , Morocco ),” Appl. Clay Sci., vol. 102, pp. 139–147, 2014, doi: 10.1016/j.clay.2014.09.029.
L. Bouna et al., “Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers,” Appl. Clay Sci., vol. 52, no. 3, pp. 301–311, 2011, doi: 10.1016/j.clay.2011.03.009.
J. Wu, Y. Wang, Z. Wu, Y. Gao, and X. Li, “Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions,” Sci. Total Environ., vol. 708, p. 134409, 2020, doi: 10.1016/j.scitotenv.2019.134409.
P. Nshimiyimana, N. Fagel, A. Messan, D. O. Wetshondo, and L. Courard, “Physico-chemical and mineralogical characterization of clay materials suitable for production of stabilized compressed earth blocks,” Constr. Build. Mater., vol. 241, p. 118097, 2020, doi: 10.1016/j.conbuildmat.2020.118097.
M. T. Diatta, “Matières premières argileuses du Sénégal: caractéristiques et applications aux produits céramiques de grande diffusion,” (Doctoral dissertation, Université de Limoges, France)., 2016.
M. I. Carretero, “Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties,” Appl. Clay Sci., vol. 189, p. 105526, 2020, doi: 10.1016/j.clay.2020.105526.
R. Hojiyev, Y. Ulcay, and M. S. Çelik, “Development of a clay-polymer compatibility approach for nanocomposite applications,” Appl. Clay Sci., vol. 146, pp. 548–556, 2017, doi: 10.1016/j.clay.2017.07.007.
Y. Millogo, “Etude géotechnique, chimique et minéralogique de matières premières argileuse et latéritique du Burkina Faso améliorées aux liants hydrauliques: application au génie civil (bâtiment et route),” (Doctoral dissertation, University Ouagadougou, Burkina Faso), 2008.
K. G. Akpomie, C. F. Onyeabor, C. C. Ezeofor, J. U. Ani, and S. I. Eze, “Natural aluminosilicate clay obtained from south-eastern Nigeria as potential sorbent for oil spill remediation,” J. African Earth Sci., vol. 155, pp. 118–123, 2019, doi: 10.1016/j.jafrearsci.2019.04.013.
Z. Sun et al., “Investigation of natural minerals for ulcerative colitis therapy,” Appl. Clay Sci., vol. 186, p. 105436, 2020, doi: 10.1016/j.clay.2020.105436.
R. Kaminskas, R. Kubiliute, and B. Prialgauskaite, “Smectite clay waste as an additive for Portland cement,” Cem. Concr. Compos., vol. 113, p. 103710, 2020, doi: 10.1016/j.cemconcomp.2020.103710.
A. Elgamouz, N. Tijani, I. Shehadi, K. Hasan, and M. A. F. Kawam, “Dataset of multiple methodology characterization of an illite-kaolinite clay mineral for the purpose of using it as ceramic membrane supports,” Data Br., vol. 29, p. 105300, 2020, doi: 10.1016/j.dib.2020.105300.
U. C. Ugochukwu and C. I. Fialips, “Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions,” Chemosphere, vol. 174, pp. 28–38, 2017, doi: 10.1016/j.chemosphere.2017.01.080.
L. Bouna, A. A. El Fakir, A. Benlhachemi, K. Draoui, S. Villain, and F. Guinneton, “Physico-chemical characterization of clays from Assa-Zag for valorization in cationic dye methylene blue adsorption,” Mater. Today Proc., vol. 22, pp. 22–27, 2020, doi: 10.1016/j.matpr.2019.08.059.
Y. Dehmani et al., “Chemical characterization and adsorption of oil mill wastewater on Moroccan clay in order to be used in the agricultural field,” Heliyon, vol. 6, no. 1, p. e03164, 2020, doi: 10.1016/j.heliyon.2020.e03164.
S. P. da Silva Ribeiro, L. dos Santos Cescon, R. Q. C. R. Ribeiro, A. Landesmann, L. R. de Moura Estevão, and R. S. V. Nascimento, “Effect of clay minerals structure on the polymer flame retardancy intumescent process,” Appl. Clay Sci., vol. 161, pp. 301–309, 2018, doi: 10.1016/j.clay.2018.04.037.
H. Slimanou, D. Eliche-Quesada, S. Kherbache, and N. Bouzidi, “Harbor Dredged Sediment as raw material in fired clay brick production: Characterization and properties,” J. Build. Eng., vol. 28, p. 101085, 2020, doi: 10.1016/j.jobe.2019.101085.
M. El Ouahabi, “Valorisation industrielle et artisanale des argiles du Maroc,” (Doctoral dissertation, University of Liege, Belgium), 2013.
M. Belghazdis, E. K. Hachem, and H. Benmoussa, “Quantification of clay minerals from Meknes: Theory and application,” 2022 2nd Int. Conf. Innov. Res. Appl. Sci. Eng. Technol. IEEE, pp. 1–7, 2022.
X. Zhou et al., “XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review,” Solid Earth Sci., vol. 3, no. 1, pp. 16–29, 2018, doi: 10.1016/j.sesci.2017.12.002.
M. Thiry, N. Carrillo, C. Franke, and N. Martineau, “Technique de préparation des minéraux argileux en vue de l’analyse par diffraction des Rayons X et introduction à l’interprétation des diagrammes,” 2013.
M. Mattioli, L. Giardini, C. Roselli, and D. Desideri, “Mineralogical characterization of commercial clays used in cosmetics and possible risk for health,” Appl. Clay Sci., vol. 119, pp. 449–454, 2016, doi: 10.1016/j.clay.2015.10.023.
J. Thorez, Determination of clay minerals by X-Ray Difraction and applications in Clay Geology. University of Liege. Belgica, 1995.
M. Felhi, A. Tlili, M. E. Gaied, and M. Montacer, “Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia,” Appl. Clay Sci., vol. 39, no. 3–4, pp. 208–217, 2008, doi: 10.1016/j.clay.2007.06.004.
M. El Ouahabi, H. E. B. El Idrissi, L. Daoudi, M. El Halim, and N. Fagel, “Moroccan clay deposits: Physico-chemical properties in view of provenance studies on ancient ceramics,” Appl. Clay Sci., vol. 172, pp. 65–74, 2019, doi: 10.1016/j.clay.2019.02.019.
H. Çiftçi, B. Ersoy, and A. Evcin, “Purification of Turkish Bentonites and Investigation of the Contact Angle, Surface Free Energy and Zeta Potential Profiles of Organo-Bentonites as a Function of Ctab Concentration,” Clays Clay Miner., vol. 68, no. 3, pp. 250–261, 2020, doi: 10.1007/s42860-020-00070-0.