Superoxide Dismutase from Marine as a Cytotoxic Agent
Abstract
The prevalence of cancer in Indonesia has shown an increase from 1.4 per 1000 population in 2013 to 1.79 per 1000 population in 2018. 70% of our planet is covered by unparalleled air and marine biodiversity. Therefore, medical researchers have focused on the marine world which has great potential, in the last six decades (Sagar et al. 2010). To find out other uses of biota, it is necessary to study the SOD of marine biota that reacts with their metal cofactors, to determine the specific SOD of some biota, to determine the SOD cytotoxic activity of several marine biota, to determine the mechanism of SOD of marine biota as anticancer. This literature review was carried out in several stages: formulating problems, collecting, evaluating, analyzing, and synthesizing data. The data sources used are international journals from publishers such as Science Direct, Elseiver, and SpringerLink between 2010 and 2021. The literature results obtained for the SOD classification of marine biota based on metal cofactors are 1,092 articles. The articles obtained will be selected and 52 articles that meet the inclusion criteria will be reviewed. The results of the search for specific SOD activities from marine biota were obtained by 1,243 articles. 13 articles that meet the inclusion criteria and will be reviewed. The results of the search for SOD cytotoxic activity from marine biota obtained 2,199 articles. 7 articles that met the inclusion criteria will be reviewed. The search results for specific SOD activities from marine biota were 2,496 articles. 8 articles that meet the inclusion criteria and will be reviewed. The results showed that SOD from marine biota had cytotoxic activity.
Downloads
References
D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.
Badan Penelitian Dan Pengembangan Kesehatan Republik Indonesia, “Laporan Riskesdas 2018 Nasional.pdf,” Lembaga Penerbit Balitbangkes. p. hal 156, 2018.
National Cancer Institute, “Chemotherapy and you,” U.S. Dep. Heal. Hum. Serv. | Natl. Institutes Heal., p. 68, 2018, [Online]. Available: http: //www.cancer.gov/cancertopics/coping/ chemotherapy-and-you. [Accessed: March 2024].
J. Tanaka et al., “New polyoxygenated steroids exhibiting reversal of multidrug resistance from the gorgonian Isis hippuris,” Tetrahedron, vol. 58, no. 32, pp. 6259–6266, 2002.
B. Proposal, “Cancer research,” Nature, vol. 124, no. 3135, p. 844, 1929.
H. Winarsi, Antioksidan alami dan radikal bebas: Potensi dan aplikasi dalam kesehatan. 2007.
K. C. Kregel and H. J. Zhang, “An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations,” Am. J. Physiol. - Regul. Integr. Comp. Physiol., vol. 292, no. 1, pp. 18–36, 2007.
B. Rajkapoor et al., “Antitumor and cytotoxic effects of Phyllanthus polyphyllus on ehrlich ascites carcinoma and human cancer cell lines,” Biosci. Biotechnol. Biochem., vol. 71, no. 9, pp. 2177–2183, 2007.
G. M. Cragg and D. J. Newman, “Nature: A vital source of leads for anticancer drug development,” Phytochem. Rev., vol. 8, no. 2, pp. 313–331, 2009.
S. Sagar, M. Kaur, and K. P. Minneman, “Antiviral lead compounds from marine sponges,” Mar. Drugs, vol. 8, no. 10, pp. 2619–2638, 2010.
A. Trianto, Ambariyanto, and R. Murwani, “Skrining Bahan Anti Kanker pada Berbagai Jenis Sponge dan,” Ilmu Kelaut., vol. 9, no. September, pp. 120–124, 2004.
M. K. Shigenaga and B. N. Ames, “Oxidants and mitogenesis as causes of mutation and cancer: the influence of diet.,” Basic Life Sci., vol. 61, pp. 419–436, 1993.
F. M. Moodie et al., “Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF‐κB activation and proinflammatory cytokine release in alveolar epithelial cells,” FASEB J., vol. 18, no. 15, pp. 1897–1899, 2004.
J. Boyer, D. Brown, and R. H. Liu, “In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer,” Nutr. J., vol. 4, pp. 1–15, 2005.
E. Erlidawati, S. Safrida, and M. Mukhlis, “Potensi Antioksidan Sebagai Antidiabetes,” Potensi Antioksidan Sebagai Antidiabetes, pp. 1–11, 2018.
T. Wresdiyati, A. B. Hartanta, and M. Astawan, “Tepung Rumput Laut (Eucheuma Cottonii) Menaikkan Level Superoksida Dismutase (Sod),” J. Vet., vol. 12, no. 2, pp. 126–135, 2011.
Y. Wang, K. Osatomi, Y. Nagatomo, A. Yoshida, and K. Hara, “Purification, molecular cloning, and some properties of a manganese-containing superoxide dismutase from Japanese flounder (Paralichthys olivaceus),” Comp. Biochem. Physiol. - B Biochem. Mol. Biol., vol. 158, no. 4, pp. 289–296, 2011.
S. Lian et al., “Genome-wide identification and characterization of SODS in Zhikong scallop reveals gene expansion and regulation divergence after toxic dinoflagellate exposure,” Mar. Drugs, vol. 17, no. 12, 2019.
M. R. Murali, S. B. Raja, and S. N. Devaraj, “Neutralization of radical toxicity by temperature-dependent modulation of extracellular SOD activity in coral bleaching pathogen Vibrio shiloi and its role as a virulence factor,” Arch. Microbiol., vol. 192, no. 8, pp. 619–623, 2010.
A. F. Hell, F. Gasulla, M. González-Hourcade, E. M. Del Campo, D. C. Centeno, and L. M. Casano, “Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System,” Plant Cell Physiol., vol. 60, no. 8, pp. 1880–1891, 2019.
D. M. K. P. Sirisena et al., “A manganese superoxide dismutase (MnSOD) from red lip mullet, Liza haematocheila: Evaluation of molecular structure, immune response, and antioxidant function,” Fish Shellfish Immunol., vol. 84, pp. 73–82, 2019.
L. Ruan et al., “Characterization of a novel extracellular Cu[sbnd]Zn superoxide dismutase from Rimicaris exoculata living around deep-sea hydrothermal vent,” Int. J. Biol. Macromol., vol. 163, pp. 2346–2356, 2020.
D. M. K. P. Sirisena, W. M. Gayashani Sandamalika, M. D. Neranjan Tharuka, R. K. Madusanka, J. B. Jeong, and J. Lee, “A copper-zinc-superoxide dismutase (CuZnSOD) from redlip mullet, Liza haematocheila: Insights to its structural characteristics, immune responses, antioxidant activity, and potent antibacterial properties,” Dev. Comp. Immunol., vol. 123, no. April, p. 104165, 2021.
X. Wang et al., “Characterizations of intracellular copper/zinc superoxide dismutase from yellow drum (Nibea albiflora, Richardson 1846) and its gene expressions under the ammonia/nitrite stress,” Aquat. Toxicol., vol. 214, p. 105254, 2019.
A. Sun, H. Zhu, X. Wang, Q. Hu, Z. Tian, and H. Hu, “Molecular characterization of manganese superoxide dismutase (MnSOD) from sterlet Acipenser ruthenus and its responses to Aeromonas hydrophila challenge and hypoxia stress,” Comp. Biochem. Physiol. -Part A Mol. Integr. Physiol., vol. 234, no. December 2018, pp. 68–76, 2019.
F. Zeinali, A. Homaei, and E. Kamrani, “Identification and kinetic characterization of a novel superoxide dismutase from Avicennia marina: An antioxidant enzyme with unique features,” Int. J. Biol. Macromol., vol. 105, pp. 1556–1562, 2017.
H. Wang, S. Abassi, and J. S. Ki, “Origin and roles of a novel copper-zinc superoxide dismutase (CuZnSOD) gene from the harmful dinoflagellate Prorocentrum minimum,” Gene, vol. 683, pp. 113–122, 2019.
J. Wang et al., “The distribution, expression of the Cu/Zn superoxide dismutase in Apostichopus japonicus and its function for sea cucumber immunity,” Fish Shellfish Immunol., vol. 89, pp. 745–752, 2019.
B. Wang et al., “Molecular cloning and functional characterization of a Cu/Zn superoxide dismutase from jellyfish Cyanea capillata,” Int. J. Biol. Macromol., vol. 144, pp. 1–8, 2020.
R. González-Ruiz, O. N. Granillo-Luna, A. B. Peregrino-Uriarte, S. Gómez-Jiménez, and G. Yepiz-Plascencia, “Mitochondrial manganese superoxide dismutase from the shrimp Litopenaeus vannamei: Molecular characterization and effect of high temperature, hypoxia and reoxygenation on expression and enzyme activity,” J. Therm. Biol., vol. 88, no. December 2019, 2020.
E. J. Won, K. Ra, K. T. Kim, J. S. Lee, and Y. M. Lee, “Three novel superoxide dismutase genes identified in the marine polychaete Perinereis nuntia and their differential responses to single and combined metal exposures,” Ecotoxicol. Environ. Saf., vol. 107, pp. 36–45, 2014.
Y. Li, L. Yan, X. Kong, J. Chen, and H. Zhang, “Cloning, expression, and characterization of a novel superoxide dismutase from deep-sea sea cucumber,” Int. J. Biol. Macromol., vol. 163, pp. 1875–1883, 2020.
Q. Wang, P. Nie, Y. Hou, and Y. Wang, “Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108,” Protein Expr. Purif., vol. 173, no. February, p. 105661, 2020.
S. F. Chew, C. Z. Y. Koh, K. C. Hiong, M. V. Boo, W. P. Wong, and Y. K. Ip, “The fluted giant clam (Tridacna squamosa) increases the protein abundance of the host’s copper-zinc superoxide dismutase in the colorful outer mantle, but not the whitish inner mantle, during light exposure,” Comp. Biochem. Physiol. -Part A Mol. Integr. Physiol., vol. 250, no. June, p. 110791, 2020.
R. González-Ruiz, A. B. Peregrino-Uriarte, E. M. Valenzuela-Soto, F. J. Cinco-Moroyoqui, M. A. Martínez-Téllez, and G. Yepiz-Plascencia, “Mitochondrial manganese superoxide dismutase knock-down increases oxidative stress and caspase-3 activity in the white shrimp Litopenaeus vannamei exposed to high temperature, hypoxia, and reoxygenation,” Comp. Biochem. Physiol. -Part A Mol. Integr. Physiol., vol. 252, p. 110826, 2021.
Y. Li and H. Zhang, “A novel, kinetically stable copper, zinc superoxide dismutase from Psychropotes longicauda,” Int. J. Biol. Macromol., vol. 140, pp. 998–1005, 2019.
J. yu He, C. feng Chi, and H. hui Liu, “Identification and analysis of an intracellular Cu/Zn superoxide dismutase from Sepiella maindroni under stress of Vibrio harveyi and Cd2+,” Dev. Comp. Immunol., vol. 47, no. 1, pp. 1–5, 2014.
Z. Yu, X. He, D. Fu, and Y. Zhang, “Two superoxide dismutase (SOD) with different subcellular localizations involved in innate immunity in Crassostrea hongkongensis,” Fish Shellfish Immunol., vol. 31, no. 4, pp. 533–539, 2011.
M. N. Hung, R. Shiomi, R. Nozaki, H. Kondo, and I. Hirono, “Identification of novel copper/zinc superoxide dismutase (Cu/ZnSOD) genes in kuruma shrimp Marsupenaeus japonicus,” Fish Shellfish Immunol., vol. 40, no. 2, pp. 472–477, 2014.
J. Liu, X. Tang, Y. Wang, Y. Zang, and B. Zhou, “A Zostera marina manganese superoxide dismutase gene involved in the responses to temperature stress,” Gene, vol. 575, no. 2, pp. 718–724, 2016.
M. Wang, B. Wang, K. Jiang, M. Liu, X. Shi, and L. Wang, “A mitochondrial manganese superoxide dismutase involved in innate immunity is essential for the survival of Chlamys farreri,” Fish Shellfish Immunol., vol. 72, no. November 2017, pp. 282–290, 2018.
J. S. Rhee, E. J. Won, R. O. Kim, J. Lee, K. H. Shin, and J. S. Lee, “Expression of superoxide dismutase (SOD) genes from the copper-exposed polychaete, Neanthes succinea,” Mar. Pollut. Bull., vol. 63, no. 5–12, pp. 277–286, 2011.
H. Liu, J. He, C. Chi, and Y. Gu, “Identification and analysis of icCu/Zn-SOD, Mn-SOD and ecCu/Zn-SOD in superoxide dismutase multigene family of Pseudosciaena crocea,” Fish Shellfish Immunol., vol. 43, no. 2, pp. 491–501, 2015.
N. Narayanan, B. Krishnakumar, and V. B. Manilal, “Oxygen tolerance and occurrence of superoxide dismutase as an antioxidant enzyme in Metopus es,” Res. Microbiol., vol. 161, no. 3, pp. 227–233, 2010.
Q. Wang, Z. Yuan, H. Wu, F. Liu, and J. Zhao, “Molecular characterization of a manganese superoxide dismutase and copper/zinc superoxide dismutase from the mussel Mytilus galloprovincialis,” Fish Shellfish Immunol., vol. 34, no. 5, pp. 1345–1351, 2013.
B. M. Kim, J. W. Lee, J. S. Seo, K. H. Shin, J. S. Rhee, and J. S. Lee, “Modulated expression and enzymatic activity of the monogonont rotifer Brachionus koreanus Cu/Zn- and Mn-superoxide dismutase (SOD) in response to environmental biocides,” Chemosphere, vol. 120, pp. 470–478, 2015.
N. Umasuthan et al., “A manganese superoxide dismutase (MnSOD) from Ruditapes philippinarum: Comparative structural- and expressional-analysis with copper/zinc superoxide dismutase (Cu/ZnSOD) and biochemical analysis of its antioxidant activities,” Fish Shellfish Immunol., vol. 33, no. 4, pp. 753–765, 2012.
C. Angulo, M. Maldonado, K. Delgado, and M. Reyes-Becerril, “Debaryomyces hansenii up regulates superoxide dismutase gene expression and enhances the immune response and survival in Pacific red snapper (Lutjanus peru) leukocytes after Vibrio parahaemolyticus infection,” Dev. Comp. Immunol., vol. 71, pp. 18–27, 2017.
A. García-Triana, T. Zenteno-Savín, A. B. Peregrino-Uriarte, and G. Yepiz-Plascencia, “Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: Effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity,” Dev. Comp. Immunol., vol. 34, no. 11, pp. 1230–1235, 2010.
J. Wu et al., “The expression of superoxide dismutase in Mytilus coruscus under various stressors,” Fish Shellfish Immunol., vol. 70, pp. 361–371, 2017.
M. Wang, L. Wang, Q. Yi, Y. Gai, and L. Song, “Molecular cloning and characterization of a cytoplasmic manganese superoxide dismutase and a mitochondrial manganese superoxide dismutase from Chinese mitten crab Eriocheir sinensis,” Fish Shellfish Immunol., vol. 47, no. 1, pp. 407–417, 2015.
J. Sook Chung, T. R. Bachvaroff, J. Trant, and A. Place, “A second copper zinc superoxide dismutase (CuZnSOD) in the blue crab Callinectes sapidus: Cloning and up-regulated expression in the hemocytes after immune challenge,” Fish Shellfish Immunol., vol. 32, no. 1, pp. 16–25, 2012.
Y. Bao, L. Li, and G. Zhang, “Polymorphism of the superoxide dismutase gene family in the bay scallop (Argopecten irradians) and its association with resistance/susceptibility to Vibrio anguillarum,” Dev. Comp. Immunol., vol. 34, no. 5, pp. 553–561, 2010.
D. Zhang, S. Cui, H. Guo, and S. Jiang, “Genomic structure, characterization and expression analysis of a manganese superoxide dismutase from pearl oyster Pinctada fucata,” Dev. Comp. Immunol., vol. 41, no. 4, pp. 484–490, 2013.
L. Zheng et al., “A manganese superoxide dismutase (MnSOD) from ark shell, Scapharca broughtonii: Molecular characterization, expression and immune activity analysis,” Fish Shellfish Immunol., vol. 45, no. 2, pp. 656–665, 2015.
N. Umasuthan, S. D. N. K. Bathige, W. S. Thulasitha, W. Qiang, B. S. Lim, and J. Lee, “Characterization of rock bream (Oplegnathus fasciatus) cytosolic Cu/Zn superoxide dismutase in terms of molecular structure, genomic arrangement, stress-induced mRNA expression and antioxidant function,” Comp. Biochem. Physiol. Part - B Biochem. Mol. Biol., vol. 176, no. 1, pp. 18–33, 2014.
G. A. Gómez-Anduro, F. Ascencio-Valle, A. B. Peregrino-Uriarte, A. Cámpa-Córdova, and G. Yepiz-Plascencia, “Cytosolic manganese superoxide dismutase genes from the white shrimp Litopenaeus vannamei are differentially expressed in response to lipopolysaccharides, white spot virus and during ontogeny,” Comp. Biochem. Physiol. - B Biochem. Mol. Biol., vol. 162, no. 4, pp. 120–125, 2012.
N. C. N. Perera, G. I. Godahewa, and J. Lee, “Copper-zinc-superoxide dismutase (CuZnSOD), an antioxidant gene from seahorse (Hippocampus abdominalis); molecular cloning, sequence characterization, antioxidant activity and potential peroxidation function of its recombinant protein,” Fish Shellfish Immunol., vol. 57, pp. 386–399, 2016.
N. Umasuthan et al., “A manganese superoxide dismutase with potent antioxidant activity identified from Oplegnathus fasciatus: Genomic structure and transcriptional characterization,” Fish Shellfish Immunol., vol. 34, no. 1, pp. 23–37, 2013.
N. C. N. Perera et al., “Manganese-superoxide dismutase (MnSOD), a role player in seahorse (Hippocampus abdominalis) antioxidant defense system and adaptive immune system,” Fish Shellfish Immunol., vol. 68, pp. 435–442, 2017.
J. Li, P. Chen, P. Liu, B. Gao, Q. Wang, and J. Li, “The cytosolic manganese superoxide dismutase cDNA in swimming crab Portunus trituberculatus: Molecular cloning, characterization and expression,” Aquaculture, vol. 309, no. 1–4, pp. 31–37, 2010.
C. Liu et al., “The modulation of extracellular superoxide dismutase in the specifically enhanced cellular immune response against secondary challenge of Vibrio splendidus in Pacific oyster (Crassostrea gigas),” Dev. Comp. Immunol., vol. 63, pp. 163–170, 2016.
C. Li, J. He, X. Su, and T. Li, “A manganese superoxide dismutase in blood clam Tegillarca granosa: Molecular cloning, tissue distribution and expression analysis,” Comp. Biochem. Physiol. - B Biochem. Mol. Biol., vol. 159, no. 1, pp. 64–70, 2011.
H. Li, X. Sun, Z. Cai, G. Cai, and K. Xing, “Identification and analysis of a Cu/Zn superoxide dismutase from Haliotis diversicolor supertexta with abalone juvenile detached syndrome,” J. Invertebr. Pathol., vol. 103, no. 2, pp. 116–123, 2010.
S. Sookruksawong, S. Pongsomboon, and A. Tassanakajon, “Genomic organization of the cytosolic manganese superoxide dismutase gene from the Pacific white shrimp, Litopenaeus vannamei, and its response to thermal stress,” Fish Shellfish Immunol., vol. 35, no. 5, pp. 1395–1405, 2013.
J. S. Kim, H. Kim, B. Yim, J. S. Rhee, E. J. Won, and Y. M. Lee, “Identification and molecular characterization of two Cu/Zn-SODs and Mn-SOD in the marine ciliate Euplotes crassus: Modulation of enzyme activity and transcripts in response to copper and cadmium,” Aquat. Toxicol., vol. 199, no. October 2017, pp. 296–304, 2018.
X. Wang, Q. Song, Z. Wang, and F. Han, “A novel extracellular copper/zinc superoxide dismutase identified from Nibea albiflora and its characteristics under ammonia/nitrite stress,” Int. J. Biol. Macromol., vol. 115, pp. 608–617, 2018.
D. Ferro et al., “Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis,” Aquat. Toxicol., vol. 140–141, pp. 369–379, 2013.
H. Rahman, G. Kartawinata, and E. Julianti, “Uji Aktivitas Enzim Superoksida Dismutase dalam Ekstrak Mesokarp Buah Merah (Pandanus conoideus Lamarck) Menggunanakan Densitometri Citra Elektroforegram,” Acta Pharm. Indones., vol. XXXVII, no. 2, pp. 2012–2055, 2012.
B. Kokkas and E. Kotridis, “Antihyperlipidemic agents,” Ep. Klin. Farmakol. kai Farmakokinet., vol. 9, no. 1, pp. 14–19, 1991.
E. Vega-Avila and M. K. Pugsley, “An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells,” Proc. West. Pharmacol. Soc., vol. 54, no. March, pp. 10–14, 2011.
S. Nurhayati and Y. Lusiyanti, “Apoptosis Dan Respon Biologi Sel Sebagai Faktor Prognosa,” Bul. Al., vol. 7, no. 3, pp. 57–66, 2006.
C. T. Modlin, “Halitosis [3],” South African Med. J., vol. 87, no. 2, p. 184, 1997.
A. M. O’Sullivan, Y. C. O’Callaghan, M. N. O’Grady, M. Hayes, J. P. Kerry, and N. M. O’Brien, “The effect of solvents on the antioxidant activity in Caco-2 cells of Irish brown seaweed extracts prepared using accelerated solvent extraction (ASE®),” J. Funct. Foods, vol. 5, no. 2, pp. 940–948, 2013.
R. K. Rajeshkumar et al., “Antiproliferative activity of marine stingray Dasyatis sephen venom on human cervical carcinoma cell line,” J. Venom. Anim. Toxins Incl. Trop. Dis., vol. 21, no. 1, 2015.
K. Chairman, A. J. A. R. Singh, and G. Alagumuthu, “Cytotoxic and antioxidant activity of selected marine sponges,” Asian Pacific J. Trop. Dis., vol. 2, no. 3, pp. 234–238, 2012.
A. Kumari et al., “Isolation and Characterization of Conotoxin Protein from Conus inscriptus and Its Potential Anticancer Activity Against Cervical Cancer (HeLa-HPV 16 Associated) Cell Lines,” Int. J. Pept. Res. Ther., vol. 26, no. 2, pp. 1051–1059, 2020.
M. Zhong, P. Yin, and L. Zhao, “Toxic effect of nonylphenol on the marine macroalgae Gracilaria lemaneiformis (Gracilariales, Rhodophyta): antioxidant system and antitumor activity,” Environ. Sci. Pollut. Res., vol. 24, no. 11, pp. 10519–10527, 2017.
M. F. Chen et al., “Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis Zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2 Cells,” Biotechnol. Bioprocess Eng., vol. 24, no. 2, pp. 308–317, 2019.
Y. Y. Chia, M. S. Kanthimathi, K. S. Khoo, J. Rajarajeswaran, H. M. Cheng, and W. S. Yap, “Antioxidant and cytotoxic activities of three species of tropical seaweeds,” BMC Complement. Altern. Med., vol. 15, no. 1, 2015.
R. J. Youle and A. Strasser, “The BCL-2 protein family: Opposing activities that mediate cell death,” Nat. Rev. Mol. Cell Biol., vol. 9, no. 1, pp. 47–59, 2008.
J. Ismy, S. Sugandi, D. Rachmadi, S. Hardjowijoto, and A. Mustafa, “The effect of exogenous superoxide dismutase (SOD) on caspase-3 activation and apoptosis induction in PC-3 prostate cancer cells,” Res. Reports Urol., vol. 12, pp. 503–508, 2020.
Y. Liu, Y. L. Liu, W. Cheng, X. M. Yin, and B. Jiang, “The expression of SIRT3 in primary hepatocellular carcinoma and the mechanism of its tumor suppressing effects,” Eur. Rev. Med. Pharmacol. Sci., vol. 21, no. 5, pp. 978–998, 2017.
L. Galluzzi, J. M. Bravo-San Pedro, and G. Kroemer, “Organelle-specific initiation of cell death,” Nat. Cell Biol., vol. 16, no. 8, pp. 728–736, 2014.
K. Polyak, Y. Xia, J. L. Zweier, K. W. Kinzler, and B. Vogelstein, “Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300-5. PMID: 9305847.,” vol. 389, no. September, pp. 300–305, 1997, [Online]. Available: http://welchlink.welch.
J. M. Phang, The Regulatory Functions of Proline and Pyrroline-5-carboxylic Acid, vol. 25, no. C. ACADEMIC PRESS, INC., 1985.
C. A. Hu et al., “Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis,” Mol. Cell. Biochem., vol. 295, no. 1–2, pp. 85–92, 2007.
Z. Hongmei, “Extrinsic and Intrinsic Apoptosis Signal Pathway Review,” Apoptosis Med., pp. 3–22, 2012.
Y. H. Wang, X. J. Xu, L. F. Zhang, and H. L. Li, “Mimic of manganese superoxide dismutase induces apoptosis in human acute myeloid leukemia cells,” Leuk. Lymphoma, vol. 55, no. 5, pp. 1166–1175, 2014.
Y. H. Wang, Z. B. Zhou, C. A. Guo, J. Zhai, F. M. Qi, and H. L. Li, “Role of mimic of manganese superoxide dismutase in proliferation and apoptosis of gastric carcinoma BGC-823 cells in vitro and in vivo,” Int. Immunopharmacol., vol. 26, no. 2, pp. 277–285, 2015.
W. Feng, S. Mei, Y. Wenjie, and H. Luyuan, “High-level soluble expression of recombinant human manganese superoxide dismutase in Escherichia coli, and its effects on proliferation of the leukemia cell,” Protein Expr. Purif., vol. 77, no. 1, pp. 46–52, 2011.
K. Salem, M. L. McCormick, E. Wendlandt, F. Zhan, and A. Goel, “Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma,” Redox Biol., vol. 4, pp. 23–33, 2015.
G. Russo et al., “Prolonged activity of a recombinant manganese superoxide dismutase through a formulation of polymeric multi-layer nanoassemblies targeting cancer cells,” Eur. J. Pharm. Sci., vol. 162, no. April, p. 105825, 2021.
Z. A. Sibenaller et al., “Extracellular superoxide dismutase suppresses hypoxia-inducible factor-1α in pancreatic cancer,” Free Radic. Biol. Med., vol. 69, pp. 357–366, 2014.