Modern Walking Robots: A Brief Overview

  • Vyacheslav Lyashenko
  • M. Ayaz Ahmad
  • Nataliya Belova
  • Svitlana Sotnik
Keywords: Advantages, Design, Disadvantages, Robot, Walking

Abstract

In this review, we would like to present some of the most interesting modern designs of walking robots: bipedal, quadropedal, hexopedal, and octopods. Their advantages and disadvantages are highlighted. It has been determined that structures with eight or more limbs are ineffective due to high level of electricity consumption. The use of more than six number of legs does not give noticeable advantages in profile cross-country ability or maneuverability, however, it allows to reduce the forces and moments of inertia forces due to decrease in mode coefficient (ratio of time spent by propulsor in support to time of entire step), and, consequently, smoother leg movements in swing phase.

Downloads

Download data is not yet available.

Author Biographies

Vyacheslav Lyashenko

Department of Media Systems and Technology, Kharkiv National University of Radio Electronics. Ukraine.

M. Ayaz Ahmad

Department of Physics, Faculty of Science, University of Tabuk. Saudi Arabia.

Nataliya Belova

Department of Informatics, Kharkiv National University of Radio Electronics. Ukraine.

Svitlana Sotnik

Department of Computer-Integrated Technologies, Automation and Mechatronics. Kharkiv National University of Radio Electronics. Ukraine.

This is an open access article, licensed under CC-BY-SA

Creative Commons License
Published
        Views : 401
2021-09-15
    Downloads : 268
How to Cite
[1]
V. Lyashenko, M. A. Ahmad, N. Belova, and S. Sotnik, “Modern Walking Robots: A Brief Overview”, International Journal of Recent Technology and Applied Science, vol. 3, no. 2, pp. 32-39, Sep. 2021.
Section
Articles

References

R. Matarneh, S. Maksymova, Zh. Deineko, and V. Lyashenko, “Building Robot Voice Control Training Methodology Using Artificial Neural Net”, International Journal of Civil Engineering and Technology, vol. 8, no. 10, pp. 523-532, 2017.

S. Maksymova, R. Matarneh, V. Lyashenko, and N. Belova, “Voice Control for an Industrial Robot as a Combination of Various Robotic Assembly Process Models”, Journal of Computer and Communications, vol. 5, no. 11, pp. 1-15, 2017. doi: 10.4236/jcc.2017.511001.

S. Maksymova, R. Matarneh, and V. Lyashenko, “Software for Voice Control Robot: Example of Implementation”, Open Access Library Journal, vol. 4, no. 8, pp. 1–12, 2017. doi: 10.4236/oalib.1103848.

V. Lyashenko, and S. Sotnik, “Analysis of Basic Principles for Sensor System Design Process Mobile Robots”, Journal La Multiapp, vol. 1, no. 4, pp. 1-6, 2020. doi: 10.37899/journallamultiapp.v1i4.237.

R. Matarneh, S. Maksymova, O. Zeleniy, and V. Lyashenko, “Voice Control for Flexible Medicine Robot”, International Journal of ComputerTrends and Technology (IJCTT), vol. 56, no. 1, pp. 1-5, 2018. doi: 10.14445/22312803/IJCTT-V56P101.

R. Matarneh, S. Sotnik, Z. Deineko, and V. Lyashenko, “Development of an Information Model for Industrial Robots Actuators”, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), vol. 16, no. 1, pp. 61-67, 2019. doi: 10.9790/1684-1601056167.

M. B. Ignat'ev, and et al., “Shagayushchie roboty-problemy i perspektivy”, Innovatika i ekspertiza: nauchnye trudy, vol. 2, pp. 128-137, 2016.

P. M. James, A. Prakash, V. Kalburgi, and P. Sreedharan, “Design, analysis, manufacturing of four-legged walking robot with insect type leg”, Materials Today: Proceedings, 2020. doi: 10.1016/j.matpr.2020.10.286

P. Nowak, A. Milecki, and M. Białek, “Construction and Control of the Bipedal Walking Robot”, In MATEC Web of Conferences, vol. 252, p. 02009, 2019. doi: 10.1051/matecconf/201925202009.

G. Bhanuteja, V. Mudkavi, G. Sharma, and M. K. E. Nidagundi, “Design and Construction of Six Legged Robot”, In 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), pp. 84-87, 2018. doi: 10.1109/ICDI3C.2018.00026.

P. Čížek, M. Zoula, and J. Faigl, “Design, Construction, and Rough-Terrain Locomotion Control of Novel Hexapod Walking Robot With Four Degrees of Freedom Per Leg”, IEEE Access, vol. 9, pp. 17866-17881, 2021. doi: 10.1109/ACCESS.2021.3053492.

E. Z. Moore, “Leg Design and Stair Climbing Control for the RHex Robotic Hexapod”, Department of Mechanical Engineering McGill University, 2002.

V. V. Chernyshev, V. V. Arykantsev, and I. P. Vershinina, “Fuzzy control of underwater walking robot during obstacle collision without pre-defined parameters”, Lecture Notes in Electrical Engineering, vol. 641, pp. 347-356, 2019. doi: 10.1007/978-3-030-39225-3_38.

D. Wojtkowiak, K. Talaśka, I. Malujda, J. Górecki, and D. Wilczyński, “Modelling and static stability analyses of the hexa-quad bimorph walking robot”, In MATEC Web of Conferences, vol. 254, p. 02029, 2019. doi: 10.1051/matecconf/201925402029.

Y. Han, S. Guo, L. Zhang, F. J. Xi, and W. Lu, “Tip-over stability analysis of a pelvic support walking robot”, Journal of healthcare engineering, vol. 2020, Article ID 1506250, 9 pages, 2020. doi: 10.1155/2020/1506250.

S. Sotnik, S. Kh. Mustafa, M. A. Ahmad, V. Lyashenko, and O. Zeleniy, “Some Features of Route Planning as the Basis in a Mobile Robot”, International Journal of Emerging Trends in Engineering Research (IJETER), vol. 8, no. 5, pp. 2074-2079, 2020. doi: 10.30534/ijeter/2020/97852020.

S. Bartoszyk, P. Kasprzak, and D. Belter,”Terrain-aware motion planning for a walking robot”, In 11th International Workshop on Robot Motion and Control (RoMoCo), pp. 29-34, 2017. doi: 10.1109/RoMoCo.2017.8003889.

N. Shibata, “18-meter moving Gundam robot towers over Yokohama port”, Nikkei Asia, 2020, [Online]. Available: https:// asia.nikkei.com/Business/Media-Entertainment/18-meter-moving-Gundam-robot-towers-over-Yokohama-port. [Accessed: July 21, 2021].

L. Jiang, J. Guo, B. Su, P. Xu, and R. Dang, “AI in Locomotion: Quadruped Bionic Mobile Robot”, In International Conference on Cognitive Systems and Signal Processing, pp. 445-451, 2018. doi: 10.1007/978-981-13-7983-3_39.

J. J. Driessen, and R. Orsolino, “Improving Robustness of Legged Robots against Mechanical Shock Using Impulsive Dynamics”, Frontiers in Mechanical Engineering, vol. 6, pp. 100, 2021. doi: 10.3389/fmech.2020.601922.

E. Ackerman, “Quadruped Robots Can Climb Ladders Now”, IEEE Spectrum, 2019.

G. S. Vasil'yanov, and A. E. Vasil'ev, “Razrabotka i issledovanie simmetrichnoj shagayushchej robototekhnicheskoj platformy so vstraivaemym ustrojstvom upravleniya”, Informatika i kibernetika (ComCon-2016), pp. 45-47, 2016.

E. V. Poezzhaeva, and P. V. Smolonogin, “Shagayushchie roboty s konturnoj sistemoj upravleniya”, Problemy mekhaniki sovremennyh mashin, pp. 227-233, 2012.

M. Martone, C. Pavlov, A. Zeloof, V. Bahl, and A. M. Johnson, “Enhancing the Vertical Mobility of a Robot Hexapod Using Microspines”, arXiv preprint arXiv:1906.04811, 2019.

S. F. Roberts, and D. E. Koditschek, “Mechanical and virtual compliance for robot locomotion in a compliant world”, ICRA, 2019.

D. Grzelczyk, and J. Awrejcewicz, “Modeling and control of an eight-legged walking robot driven by different gait generators”, International Journal of Structural Stability and Dynamics, vol. 19, no. 05, p. 1941009, 2019. doi: 10.1142/S0219455419410098.

I. Olaronke, O. Oluwaseun, and I. A. Rhoda, “Comprehensive Study of Climbing and Walking Robots (CLWAR) Paradigms”, International Journal of Applied Information Systems (IJAIS), vol. 12, no. 20, pp. 11-22, 2019.

M. Gianni, “Towards Expendable Robot Teaming in Extreme Environments”, International Journal of Mechanical Engineering and Robotics Research, vol. 8, no. 6, pp. 830-838, 2019. doi: 10.18178/ijmerr.8.6.830-838.

S. N. Teli, R. Agarwal, D. Bagul, P. Badawane, and R. Bandre, “Design and Fabrication of Multi Legged Robot”, International Research Journal of Engineering and Technology, vol. 6, no. 3, pp. 1-11, 2019.