Impregnation Effect of Synthesized Fe3O4 Nanoparticles on the Jabon Wood’s Physical Properties
Abstract
This study focused on characterizing synthetic magnetite (Fe3O4-NP) and evaluating the impregnated jabon wood’s physical properties. The co-precipitation method used for the synthesis of Fe3O4-NP, namely by mixing the iron solution (n/n Fe2+:Fe3+=1:2) with the strong base of sodium hydroxide (NaOH) (MG-S) and weak base of ammonium hydroxide (NH4OH) (MG-W) as precursors. The impregnation stage uses parameters of a -0.5 bar vacuum for half an hour and 2 bar pressure for 2 hours with magnetite concentrations of 1; 2.5; 5% w/v in a demineralized water solvent. Scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and Fourier transform infrared spectrometry (FTIR) confirmed the presence of Ferrum content and Fe-O functional group in both Fe3O4-NPs produced. The Fe3O4-NP size was also measured via the X-ray diffraction analysis, namely 34.54 nm for the MG-S and 39.24 nm for the MG-W. Magnetic strength obtained was 7.51 mT for the MG-S and 8.58 mT for the MG-W. The impregnated jabon wood’s physical properties also improved with indications of an increase in wood density, weight percent gain (WPG), bulking effect (BE), anti-swelling efficiency (ASE), and a decrease in water absorption (WA). The results showed the best treatments were MG-S 2.5% and MG-W 5%.
Downloads
References
A. Rana, K. Yadav, and S. Jagadevan, “A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity,” J. Clean. Prod., vol. 272, no. 5, p. 122880, 2020.
W. Bi et al., “Effects of chemical modification and nanotechnology on wood properties,” Nanotechnol. Rev., vol. 10, pp. 978–1008, Aug. 2021.
E. Garskaite et al., “The Accessibility of the Cell Wall in Scots Pine (Pinus sylvestris L.) Sapwood to Colloidal Fe3O4Nanoparticles,” ACS Omega, vol. 6, no. 33, pp. 21719–21729, 2021.
V. Sharma et al., “Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review,” Sci. Total Environ., vol. 653, no. 18, pp. 1042–1051, 2019, doi: 10.1016/j.scitotenv.2018.10.411.
I. Kong, S. Hj, M. Hj, D. Hui, A. Nazlim, and D. Puryanti, “Magnetic and microwave absorbing properties of magnetite – thermoplastic natural rubber nanocomposites,” J. Magn. Magn. Mater., vol. 322, no. 21, pp. 3401–3409, 2010.
J. Jayaprakash, N. Srinivasan, and P. Chandrasekaran, “Surface modifications of CuO nanoparticles using Ethylene diamine tetra acetic acid as a capping agent by sol–gel routine,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 123, pp. 363–368, Apr. 2014.
I. Wahyuningtyas, I. S. Rahayu, A. Maddu, and E. Prihatini, “Magnetic properties of wood treated with nano-magnetite and furfuryl alcohol impregnation,” BioResources, vol. 17, no. 4, pp. 6496–6510, 2022.
G. D. Laksono, I. S. Rahayu, L. Karlinasari, W. Darmawan, and E. Prihatini, “Characteristics of magnetic sengon wood impregnated with nano fe3o4 and furfuryl alcohol,” J. Korean Wood Sci. Technol., vol. 51, no. 1, pp. 1–13, 2023.
I. Rahayu, W. Darmawan, N. Nugroho, D. Nandika, and R. Marchal, “Demarcation point between juvenile and mature wood in sengon (Falcataria moluccana) and jabon (Antocephalus cadamba),” J. Trop. For. Sci., vol. 26, no. 3, pp. 331–339, 2014.
I. S. Rahayu et al., “The Effect of Synthetic and Commercial Nano-Magnetite on the Electromagnetic Absorbance Behavior of Magnetic Wood,” J. Sylva Lestari, vol. 12, no. 2, pp. 366–384, 2024.
K. D. V. Nguyen and K. D. N. Vo, “Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye,” AIMS Mater. Sci., vol. 7, no. 3, pp. 288–301, 2020.
H. Pereira, J. Graça, and J. Rodrigues, “Wood Chemistry in Relation to Quality,” Cheminform, vol. 35, Nov. 2004.
H. Krisnawati, M. Kallio, and M. Kanninen, Anthocephalus cadamba Miq.: ekologi, silvikultur dan produktivitas. 2011.
A. Martawijaya, S. Hadjodarsono, and M. Haji, Atlas kayu Indonesia jilid II. Bogor (ID): Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam, 2005.
A. Widiyanto and M. Siarudin, “Karakteristik Sifat Fisik Kayu Jabon(anthocephalus Cadamba Miq) Pada Arah Longitudinal Dan Radial,” 2017. [Online]. Available: https: //api.semanticscholar.org/CorpusID:134346950. [Accessed: Jan, 2024].
C. A. S. Hill, Wood modification: Chemical, thermal, and other processes. West Sussex (UK): John Willey and Sons Ltd., 2006.
R. Gieré, “Magnetite in the Human Body: Biogenic vs. Anthropogenic,” Proc. Natl. Acad. Sci., vol. 113, p. 201613349, Oct. 2016.
British Standard, “Standard Methods of Testing Small Clear Specimens of Timber,” 1957
W. S. Peternele et al., “Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties,” J. Nanomater., vol. 2014, 2014.
W. M. Daoush, “Co-Precipitation and Magnetic Properties of Magnetite Nanoparticles for Potential Biomedical Applications,” J. Nanomedicine Res., 2017.
V. Dubey and V. Kain, “Synthesis of magnetite by coprecipitation and sintering and its characterization,” Mater. Manuf. Process., vol. 33, no. 8, pp. 835–839, Jun. 2018.
A. G. Magdalena, I. M. B. Silva, R. F. C. Marques, A. R. F. Pipi, P. N. Lisboa-Filho, and M. Jafelicci, “EDTA-functionalized Fe3O4 nanoparticles,” J. Phys. Chem. Solids, vol. 113, pp. 5–10, 2018.
D. B. Fumis, M. L. D. C. Silveira, C. Gaglieri, L. T. Ferreira, R. F. C. Marques, and A. G. Magdalena, “The Effect of EDTA Functionalization on Fe3O4 Thermal Behavior,” Mater. Res., vol. 25, 2022.
M. Wang, N. Wang, H. Tang, M. Cao, Y. She, and L. Zhu, “Surface modification of nano-Fe 3O 4 with EDTA and its use in H 2O 2 activation for removing organic pollutants,” Catal. Sci. Technol., vol. 2, no. 1, pp. 187–194, 2012.
G. Fink, “Encyclopedia of the Elements. Technical Data, History, Processing, Applications,” Angew. Chemie Int. Ed., vol. 44, pp. 3174–3175, 2005.
J. S. J. Hargreaves, “Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catal,” Catal. Struct. React., vol. 2, no. 1–4, pp. 1–5, 2016.
Y. Dong, Y. Yan, S. Zhang, and J. Li, “Wood/Polymer Nanocomposites Prepared by Impregnation with Furfuryl Alcohol and Nano-SiO2,” BioResources, vol. 9, Aug. 2014.
I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019.
X. Zhang, R. Zhou, W. Rao, Y. Cheng, and B. G. Ekoko, “Influence of precipitator agents NaOH and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation,” J. Radioanal. Nucl. Chem., vol. 270, no. 2, pp. 285–289, 2006.
B. Y. Yu and S. Y. Kwak, “Assembly of Magnetite Nanoparticles into Spherical Mesoporous Aggregates with a 3-D Wormhole-Like Porous Structure,” Mater. Sci., no. 38, pp. 1–9, 2010.
C. Liang et al., “Superior electromagnetic interference shielding performances of epoxy composites by introducing highly aligned reduced graphene oxide films,” Compos. Part A Appl. Sci. Manuf., vol. 124, no. June, p. 105512, 2019.
A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and R. Rizzi, “QUALX2.0: A qualitative phase analysis software using the freely available database POW-COD,” J. Appl. Crystallogr., vol. 48, pp. 598–603, 2015.
P. Piekarz, K. Parlinski, and A. Oleś, “Origin of the Verwey transition in magnetite: Group theory, electronic structure, and lattice dynamics study,” Phys. Rev. B, vol. 76, Nov. 2007.
J. Winsett et al., “Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy,” SN Appl. Sci., vol. 1, no. 12, p. 1636, 2019.
S. Mohammed and H. Mohammed, “Characterization of Magnetite and Hematite Using Infrared Spectroscopy,” Arab J. Sci. Res. Publ., vol. 2, no. 1, pp. 38–44, 2018.
J. Coates, “Interpretation of Infrared Spectra, A Practical Approach,” in Encyclopedia of Analytical Chemistry, 2006.
C. H. Chia, S. Zakaria, M. Yusoff, S. C. Goh, and C. Y. Haw, “Size and crystallinity-dependent magnetic properties of CoFe 2 O 4 nanocrystals,” vol. 36, pp. 605–609, 2010.
W. S. Chiu, S. Radiman, R. Abd-shukor, M. H. Abdullah, and P. S. Khiew, “Tunable coercivity of CoFe 2 O 4 nanoparticles via thermal annealing treatment,” vol. 459, pp. 291–297, 2008.
M. K. Shahid and Y. Choi, “Characterization and Application of Magnetite Particles , Synthesized by Reverse Coprecipitation Method in Open Air from Mill Scale,” J. Magn. Magn. Mater., p. 165823, 2019.
B. X. Liang, X. Wang, J. Zhuang, Y. Chen, D. Wang, and Y. Li, “Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals **,” pp. 1805–1813, 2006.
P. Zanatta, M. Lazarotto, P. Henrique, and G. De Cademartori, “The effect of titanium dioxide nanoparticles obtained by microwave-assisted hydrothermal method on the color and decay resistance of pinewood,” Maderas. Cienc. y Tecnol., vol. 19, no. 4, pp. 495–506, 2017.
I. Ramadan, M. Moustafa, and M. Nassar, “Facile controllable synthesis of magnetite nanoparticles via a co -precipitation precipitation approach,” Egypt. J. Chem., vol. 65, no. 9, pp. 59–65, 2022.
V. Sreeja, K. Jayaprabha, and P. A. Joy, “Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI,” Appl. Nanosci., no. 5, pp. 435–441, 2015.
P. B. Rathod and S. A. Waghuley, “Synthesis and UV-Vis spectroscopic study of TiO2 nanoparticles,” Int. J. Nanomanuf., vol. 11, no. 3–4, pp. 185–193, 2015.
I. Safitri, Y. G. Wibowo, D. Rosarina, and Sudibyo, “Synthesis and characterization of magnetite (Fe3O4) nanoparticles from iron sand in Batanghari Beach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1011, no. 1, 2021.
S. Bagheri, K. Shameli, and S. B. Abd Hamid, “Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol-Gel method,” J. Chem., vol. 2013, 2013.
Y. Dong, Y. Yan, Y. Zhang, S. Zhang, and J. Li, “Combined treatment for conversion of fast-growing poplar wood to magnetic wood with high dimensional stability,” Wood Sci. Technol., 2016.
S. Holy, A. Temiz, G. Köse Demirel, M. Aslan, and M. H. Mohamad Amini, “Physical properties, thermal and fungal resistance of Scots pine wood treated with nano-clay and several metal-oxides nanoparticles,” Wood Mater. Sci. Eng., vol. 17, no. 3, pp. 176–185, 2022.
E. Suttie, “Chemically modified solid wood . I . Resistance to fungal attack,” Mater. und Org., vol. 32, no. 3, pp. 159–182, 1998.
S. L. Fadia, I. Rahayu, D. S. Nawawi, R. Ismail, and E. Prihatini, “The Physical and Magnetic Properties of Sengon (Falcataria moluccana) Wood Impregnated with Synthesized Magnetite Nanoparticles,” J. Sylva Lestari, vol. 11, no. 3, pp. 408–426, 2023.