Characteristics and Applications of Bionanosilica from Betung Bamboo Leaves
Abstract
Nanoparticles are materials that are currently widely used in research due to their novelty and the growing number of suitable applications. Silica nanoparticles can be produced by synthesizing using several methods such as melting, coprecipitation, sol-gel, and ultrasonication. The aim of this study is to determine the most appropriate synthesis method for the production of SiO₂ nanoparticles to optimize the quality of physical properties of fast-growing wood. The synthesis of SiO2 nanoparticles used in this study utilized three different methods: acid isolation method (F1), sol-gel method (F2), and reflux method (F3). Characterization of SiO2-NPs was performed using particle size analyzer (PSA), X-ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). The results of PSA analysis showed that the acid isolation method produced the smallest SiO2 particle size compared to the sol-gel and reflux methods. The zeta pontential value in each method shows that the particles produced are unstable because the potential zeta value produced is around -10 mV to -30 mV. The results of FTIR and XRD analysis show that the synthesized material is a SiO₂ compound with a cristobalite phase. Application of the material on jabon wood through impregnation showed an improvement in physical properties, including an increase in WPG, density, and BE, especially in the sol-gel method (F2).
Downloads
References
S. Khan et al., “A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms,” J. Mol. Liq., vol. 348, p. 118008, 2022.
S. Khan and M. K. Hossain, “2 - Classification and properties of nanoparticles,” in Woodhead Publishing Series in Composites Science and Engineering, S. Mavinkere Rangappa, J. Parameswaranpillai, T. G. Yashas Gowda, S. Siengchin, and M. O. B. T.-N.-B. P. C. Seydibeyoglu, Eds., Woodhead Publishing, 2022, pp. 15–54.
P. Kumar, F. Gonelimali, M. Máté, and P. Sharma, “Characteristics, Composition, and Structure of Organic Nanomaterials BT - Organic-Based Nanomaterials in Food Packaging,” K. Younis, O. Yousuf, and S. Ul Islam, Eds., Cham: Springer Nature Switzerland, 2024, pp. 15–34.
F. C. Dirna, I. Rahayu, L. H. Zaini, W. Darmawan, and E. Prihatini, “Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation,” J. Korean Wood Sci. Technol., vol. 48, no. 1, pp. 41–49, 2020.
I. Rahayu, W. Darmawan, D. S. Nawawi, E. Prihatini, R. Ismail, and G. D. Laksono, “Physical Properties of Fast-Growing Wood-Polymer Nano Composite Synthesized through TiO2 Nanoparticle Impregnation,” Polymers, vol. 14, no. 20. 2022.
E. Prihatini, R. Ismail, I. S. Rahayu, G. D. Laksono, and D. Khairunissa, “Compatibility Testing of Synthesized TiO2 Nanoparticles on The Fast-Growing Wood Physical Properties,” J. SAINS Nat., vol. 14, no. 2, pp. 62–73, 2024.
S. L. Fadia, I. S. Rahayu, D. S. Nawawi, R. Ismail, and E. Prihatini, “The Physical and Magnetic Properties of Sengon (Falcataria moluccana Miq.) Impregnated with Synthesized Magnetite Nanoparticles,” J. Sylva Lestari, vol. 11, no. 3, pp. 408–426, 2023.
B. McLean and I. Yarovsky, “Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions,” Small, vol. n/a, no. n/a, p. 2405299, Oct. 2024.
P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, and A. C. Nwanya, “Silica extraction from rice husk: Comprehensive review and applications,” Hybrid Adv., vol. 4, p. 100111, 2023.
L. P. Singh et al., “Sol-Gel processing of silica nanoparticles and their applications,” Adv. Colloid Interface Sci., vol. 214, pp. 17–37, 2014.
Z. A. Rizky, A. A., Muhammad, M., Ginting, Z., Nurlaila, R., & Nasrul, “Pengaruh Variasi Suhu Dan Lama Waktu Pembakaran Terhadap Hasil Sintesis Silika Dari Daun Bambu Menggunakan Metode Sol-Gel,” Chem. Eng. J. Storage (CEJS), 2(5), pp. 107–116, 2023.
S. Steven, E. Restiawaty, and Y. Bindar, “Operating Variables on Production of High Purity Biosilica from Rice Hull Ash by Extraction Process.,” J. Eng. Technol. Sci., vol. 54, no. 3, 2022.
J. Y. Park, Y. M. Gu, J. Chun, B.-I. Sang, and J. H. Lee, “Pilot-scale continuous biogenic silica extraction from rice husk by one-pot alkali hydrothermal treatment and ball milling,” Chem. Biol. Technol. Agric., vol. 10, no. 1, p. 102, 2023.
Y. Dong, Y. Yan, S. Zhang, and J. Li, “Wood/Polymer Nanocomposites Prepared by Impregnation with Furfuryl Alcohol and Nano-SiO2,” BioResources, vol. 9, Aug. 2014.
M. Bak, Z. Plesér, and R. Németh, “Improving the Decay Resistance of Wood through the Fixation of Different Nanoparticles Using Silica Aerogel.,” Gels (Basel, Switzerland), vol. 10, no. 4, Apr. 2024.
W. Bi et al., “Effects of chemical modification and nanotechnology on wood properties,” Nanotechnol. Rev., vol. 10, pp. 978–1008, Aug. 2021.
C. Hill, Wood Modification. Chemical, Thermal and Other Processes. London: John Wiley & Sons, 2006.
A. M. C. Yona, J. Žigon, P. Matjaž, and M. Petrič, Potentials of silicate-based formulations for wood protection and improvement of mechanical properties: A review, vol. 55, no. 4. 2021.
J. K. Patra and K. Baek, “Green Nanobiotechnology : Factors Affecting Synthesis and Characterization Techniques,” vol. 2014, 2014.
D. Sandberg, A. Kutnar, and G. Mantanis, “Wood modification technologies - A review,” iForest - Biogeosciences For., vol. 10, pp. 895–908, Dec. 2017.
C. Hill, “Wood modification: An update,” Bioresources, pp. 918–919, 2011.
R. Hartono, Erwinsyah, W. Hidayat, and R. Damayanti, “Effect of impregnation methods and bioresin concentration on physical and mechanical properties of soft-inner part of oil palm trunk,” J. Phys. Conf. Ser., vol. 1282, no. 1, 2019.
P. Gérardin, “New alternatives for wood preservation based on thermal and chemical modification of wood— a review,” Ann. For. Sci., vol. 73, no. 3, pp. 559–570, 2016.
W. Hidayat and F. Febrianto, Teknologi Modifikasi Kayu Ramah Lingkungan: Modifikasi Panas dan Pengaruhnya terhadap Sifat-sifat Kayu. Bandar Lampung: Pusaka Media, 2018.
R. Rowell, Wood Chemistry and Wood Composites. United States: CRC Press, 2012.
H. Krisnawati, M. Kallio, and M. Kanninen, Anthocephalus cadamba Miq.: ekologi, silvikultur dan produktivitas. 2011.
A. Martawijaya, I. Kartasujana, K. Kadir, and S. Prawira Among, “Atlas Kayu Indonesia Jilid 1.” Departemen Kehutanan. Badan Penelitian Dan PengembanganKehutanan, Bogor (ID), pp. 1–171, 2005.
M. Kosmulski and M. Kalbarczyk, “Zeta Potential of Nanosilica in 50% Aqueous Ethylene Glycol and in 50% Aqueous Propylene Glycol,” Molecules, vol. 28, no. 3. 2023.
C. Zhuang and Y. Chen, “The effect of nano-SiO2 on concrete properties: A review,” Nanotechnol. Rev., vol. 8, no. 1, pp. 562–572, 2019.
A. Bukowczan, E. Hebda, and K. Pielichowski, “The influence of nanoparticles on phase formation and stability of liquid crystals and liquid crystalline polymers,” J. Mol. Liq., vol. 321, p. 114849, 2021.
L. Ounoughene, G., Chivas-Joly, C., Longuet, C., Le Bihan, O., Lopez-Cuesta, J. M., & Le Coq, “Evaluation of nanosilica emission in polydimethylsiloxane composite during incineration,” J. Hazard. Mater. 371, 415-422. alcohol. J. Korean Wood Sci. Technol. 51(1), pp. 1–13, 2019.
N. Elizondo-Villarreal et al., “Synthesis and Characterization of SiO2 Nanoparticles for Application as Nanoadsorbent to Clean Wastewater,” Coatings, vol. 14, no. 7. 2024.
J. Gu, X. Cai, Y. Wang, D. Guo, and W. Zeng, “Evaluating the Effect of Nano-SiO(2) on Different Types of Soils: A Multi-Scale Study.,” Int. J. Environ. Res. Public Health, vol. 19, no. 24, Dec. 2022.
H. Pereira, J. Graça, and J. Rodrigues, “Wood Chemistry in Relation to Quality,” Cheminform, vol. 35, Nov. 2004.
S. Sankar, N. Kaur, S. Lee, and D. Y. Kim, “Rapid sonochemical synthesis of spherical silica nanoparticles derived from brown rice husk,” Ceram. Int., vol. 44, no. 7, pp. 8720–8724, 2018.
I. S. Cahyani, A. Prasetya, H. T. B. M. P., and C. W. Purnomo, “Nanosilica from geothermal sludge using sol-gel method with addition of CTAB surfactants,” AIP Conf. Proc., vol. 2391, no. 1, p. 40004, Mar. 2022.
Z. Lu, W. Hu, F. Xie, L. Zhuo, and B. Yang, “Sol–gel synthesis of nanosilica-coated para-aramid fibers and their application in the preparation of paper-based friction materials,” RSC Adv., vol. 7, no. 49, pp. 30632–30639, 2017.
C. K. Manchanda, R. Khaiwal, and S. Mor, “Application of sol–gel technique for preparation of nanosilica from coal powered thermal power plant fly ash,” J. Sol-Gel Sci. Technol., vol. 83, no. 3, pp. 574–581, 2017.
A. Thuadaij, N., & Nuntiya, “Preparation of nanosilica powder from rice husk ash by precipitation method,” Chiang Mai J. Sci. 35(1), pp. 206–211, 2008.
A. Gerasimov, O. Eremina, M. Cherkasova, and S. Dmitriev, “Application of particle-size analysis in various industries,” J. Phys. Conf. Ser., vol. 1728, p. 12003, Jan. 2021.
R. Patil and R. Dongre, “Preparation of silica powder from rice husk,” IOSR J. Appl. Chem., pp. 26–29, 2014.
B. Lu, Z., Hu, W., Xie, F., Zhuo, L., & Yang, “Sol–gel synthesis of nanosilica-coated para aramid fibers and their application in the preparation of paper-based friction materials,” RSC Adv. 7(49), 30632–30639. https//doi.org/10.1039/C7RA05142E, 2017.
Z. Cheng, H. Shan, Y. Sun, L. Zhang, H. Jiang, and C. Li, “Evolution mechanism of surface hydroxyl groups of silica during heat treatment,” Appl. Surf. Sci., vol. 513, p. 145766, 2020.
P. Nagraik, S. R. Shukla, B. U. Kelkar, and B. N. Paul, “Wood modification with nanoparticles fortified polymeric resins for producing nano-wood composites: a review,” J. Indian Acad. Wood Sci., vol. 20, no. 1, pp. 1–11, 2023.
E. Kastner and Y. Perrie, “Particle Size Analysis of Micro and Nanoparticles BT-Analytical Techniques in the Pharmaceutical Sciences.,” Springer New York, pp. 677–699, 2016.
R. Rahayu, I., Khoerudin, R., Wahyuningtyas, I., Prihatini, E., & Ismail, “Quality Evaluation of Fast-Growing Wood Impregnated with Nano-Silica Synthesized from Betung Bamboo Stems,” J. Sylva Lestari, pp. 12(3), 684–711, 2024.
N. Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, “Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2 O3 and SiO2 nanoparticles.,” IET nanobiotechnology, vol. 9(1), pp. 27–34, 2015.
R. A. Kepekçi, B. Yener İlçe, and S. Demir Kanmazalp, “Chapter 8-Plant-Derived Biomaterials for Wound Healing. In B. T.-S. in N. P. C. Atta-ur-Rahman (Ed.), Elsevier,” Bioact. Nat. Prod., 2021.
A. Sikora et al., “A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium,” Anal. Methods, vol. 7, no. 23, pp. 9835–9843, 2015, doi: 10.1039/C5AY02014J.
L. M. Alvarez-Berrios, M. P., Aponte-Reyes, L. M. Aponte-Cruz, and J. L. Loman-Cortes, P., ViveroEscoto, “Effect of The Surface Charge of Silica Nanoparticles on Oil Recovery: Wettability Alteration of Sandstone Cores and Imbibition Experiments.,” Int. Nano Lett., vol. 8(3), pp. 181–188, 2018.
A. K. Hamzah, M. H., Saaid, I. M., & Idris, “Particle stability of nano-zinc oxide and nano-silica in sodium silicate solution,” AIP Conf. Proc., vol. Vol. 2168, 2019.
W. Liu, C., Wang, X., Qin, L., Li, H., & Liang, “Magnetic coagulation and flocculation of a kaolin suspension using Fe3O4 coated with SiO2,” J. Environ. Chem. Eng., vol. 9(5), p. 105980, 2021.
I. Daou, G. Lecomte-Nana, N. Tessier-Doyen, C. Peyratout, M. Gonon, and R. Guinebretière, “Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction,” Minerals, vol. 10, p. 480, May 2020.
V.-C. Niculescu, “Mesoporous Silica Nanoparticles for Bio-Applications,” Front. Mater., vol. 7, 2020.
S. M. Khoshnazar, A. Asadi, R. Holghoomi, and A. Abdolmaleki, “Green Synthesis of Silica Nanoparticles/Nanocomposites for Biomedical Applications: A Narraitive Review,” Biochem. (Moscow), Suppl. Ser. B Biomed. Chem., vol. 17, no. 2, pp. 41–49, 2023.
J. Hargreaves, “Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts,” Catal. Struct. React., vol. 2, pp. 33–37, Oct. 2016.
C. L. Hobday, S. Krause, S. M. J. Rogge, J. D. Evans, and H. Bunzen, “Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials,” Front. Chem., vol. 9, no. November, pp. 1–10, 2021.
M. Modan and A.-G. Schiopu, “Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials,” vol. 43, Jun. 2020.
H. N. Kim and K. S. Suslick, “The effects of ultrasound on crystals: Sonocrystallization and sonofragmentation,” Crystals, vol. 8, no. 7, 2018, doi: 10.3390/cryst8070280.
J. E. Arnold and G. M. Day, “Crystal Structure Prediction of Energetic Materials,” Cryst. Growth Des., vol. 23, no. 8, pp. 6149–6160, Aug. 2023.
A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, and R. Rizzi, “{it QUALX2.0}: a qualitative phase analysis software using the freely available database POW_COD,” J. Appl. Crystallogr., vol. 48, no. 2, pp. 598–603, Apr. 2015, doi: 10.1107/S1600576715002319.
B. Mysen and P. Richet, “Chapter 5 - Silica,” B. Mysen and P. B. T.-S. G. and M. (Second E. Richet, Eds., Elsevier, 2019, pp. 143–183.
J. Bowyer, R. Schmulsky, and J. Haygreen, Forest Products and Wood Science: An Introduction. 5th Edition. Ames (USA): Iowa State Press, 2007.
I. S. Rahayu et al., “Impregnation Effect of Synthesized Fe3O4 Nanoparticles on the Jabon Wood’s Physical Properties,” Int. J. Recent Technol. Appl. Sci., vol. 6, no. 2 SE-Articles, Sep. 2024.