Arduino-Based Heart Rate Monitoring System Using Mamdani Fuzzy Logic

  • Zubaidah
  • Sriani
Keywords: Arduino, Biomedical Sensors, Health Technology, Heart Rate Monitoring, Mamdani Fuzzy Logic

Abstract

Heart disease remains one of the leading causes of death worldwide, highlighting the need for an early and accurate monitoring system. This research aims to design an Arduino-based heart rate monitoring system that integrates the MAX30102 pulse sensor and the MLX90614 body temperature sensor. Using the Mamdani fuzzy logic method, the system classifies a user's health condition into three categories: healthy, alert, and at risk, based on inputs from heart rate, body temperature, and age. A total of 27 fuzzy rules are applied, and the results are displayed in real-time via a laptop monitor. Compared to conventional heart monitoring methods, this system offers a lower-cost and portable solution suitable for household use. Preliminary tests conducted on six samples yielded an average error rate of 16.3% (beats per minute, bpm) for the pulse sensor, which falls into the medium error category, and 3.95% (°C) for the temperature sensor, which falls into the low error category. The system was evaluated by comparing sensor readings with those of standard commercial devices, indicating acceptable accuracy for a prototype stage. While the system functions well, its performance could be further improved with enhanced sensor accuracy, wireless data transmission, and integration with mobile applications. Future developments could also focus on increasing the sample size and benchmarking against clinical-grade devices to strengthen reliability and usability. The proposed system is unique in combining heart rate, body temperature, and age data through fuzzy logic to provide real-time classification of health status in a low-cost and portable design, making it a promising tool for household-based preventive heart health monitoring.

Downloads

Download data is not yet available.

Author Biographies

Zubaidah

Program of Computer Science, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara. Medan, Indonesia.

Sriani

Program of Computer Science, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara. Medan, Indonesia.

This is an open access article, licensed under CC-BY-SA

Creative Commons License
Published
        Views : 35
2025-08-26
    Downloads : 26
How to Cite
[1]
Zubaidah and Sriani, “Arduino-Based Heart Rate Monitoring System Using Mamdani Fuzzy Logic”, Journal of Engineering, Technology, and Applied Science, vol. 7, no. 2, pp. 107-126, Aug. 2025.
Section
Articles

References

[1] B. Bence, “Detection of Arrhythmias Using Smartwatches — A Systematic,” pp. 1–14, 2024.
[2] D. Nicohlas et al., “Resting Heart Rate in Cardiovascular Disease,” vol. 50, no. 9, 2023, doi: 10.1016/j.jacc.2007.04.079.
[3] E. Hussein, “Smart Wearables for the Detection of Cardiovascular Diseases : A Systematic Literature Review,” pp. 1–36, 2023.
[4] D. Levy and N. H. Lung, “The epidemiology of heart failure : The Framingham Study PART II : New Insights Into The Epidemiology And The Epidemiology of Heart Failure : The Framingham Study,” vol. 1097, no. November 2022, 2022, doi: 10.1016/0735-1097(93)90455-A.
[5] I. Amiluddin, “Analisis Metode Fuzzy Berbasis Arduino Untuk Sistem Deteksi Gejala Kekurangan Oksigen,” J. Penelit. Rumpun Ilmu Tek., vol. 2, no. 1, pp. 126–138, 2023.
[6] A. I. Gufroni, A. N. Rachman, H. Mubarok, N. Hiron, and C. M. Sidik, “Classification of Temperature and Humidity in Green Open Spaces by Implementing Internet of Things ( IoT ) using Mamdani Fuzzy Logic,” vol. 2, no. 2, pp. 205–217, 2025.
[7] R. W. Sudibyo, P. Elektronika, and N. Surabaya, “Body Temperature and Heart Rate Monitoring System Using Fuzzy Classification Method,” vol. 4, no. 2, pp. 86–96, 2022.
[8] T. Michelle, J. Kulon, H. Indra, R. Mosey, V. Albert, and K. Kunci, “Pemantauan Suhu Tubuh dan Detak Jantung Berbasis IoT dan Terintegrasi ThingSpeak , SMS dan Telegram,” vol. 13, no. 1, pp. 23–28, 2023.
[9] R. Keerthika and S. P. Niranjan, “Fuzzy-Based Control System for Solar-Powered Bulk Service Queueing Model with Vacation,” pp. 1–21, 2025.
[10] N. Sivasankari, M. Parameswari, K. Anbarasan, and M. B. Moses, “Arduino Based Human Health Care Monitoring And Control System,” vol. 11, no. 3, pp. 9–18, 2023, doi: 10.9790/1676-1103010918.
[11] A. Rahaman, M. Islam, R. Islam, M. S. Sadi, and S. Nooruddin, “Revue d’ Intelligence Artificielle Developing IoT-Based Smart Health Monitoring Systems : A Review,” vol. 33, no. 6, pp. 435–440, 2020.
[12] I. Naseer, B. S. Khan, S. Saqib, S. N. Tahir, S. Tariq, and M. S. Akhter, “EAI Endorsed Transactions Diagnosis Heart Disease Using Mamdani Fuzzy Inference Expert System,” no. April, 2024, doi: 10.4108/eai.15-1-2020.162736.
[13] et al. Mhd. Furqan, “Prototype Road Guide Tool For Blind People,” vol. 10, no. 3, pp. 12–19, 2022.
[14] A. Indra, “Sequencing Problem in Hexadecagonl Fuzzy Number,” vol. 02, no. 06, pp. 332–338, 2025.
[15] N. Okomba, I. Adeyanju, O. Adeleye, B. Omodunbi, and C. Okwor, “Prototyping of an Arduino Micro-Controlled Digital Display System,” vol. 8, no. 1, pp. 61–66, 2022.
[16] B. Jeremy, “USB Serial Communication,” p. 96001949, 2025.
[17] S. Emmanuel, “Dissecting Interconnects: Non-Transparent Noise Study in Low-frequency signals (Breadboard vs CAT Cables),” p. 96001, 2025.
[18] D. Tantowi and K. Yusuf, “Simulasi Sistem Keamanan Kendaraan Roda Dua Dengan Smartphone dan GPS Menggunakan Arduino,” J. ALGOR, vol. 1, no. 2, pp. 9–15, 2020.
[19] M. H. Bhuyan and M. Hasan, “Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus,” no. October, 2020.
[20] E. Saviour, “Dissecting Interconnects : Non-Transparent Noise Study in Low-frequency signals ( Breadboard vs CAT Cables ),” no. July, pp. 0–11, 2025, doi: 10.13140/RG.2.2.26632.12806.
[21] S. Ramesh, “A Working Prototype Using DS18B20 Temperature Sensor and Arduino for Health Monitoring,” p. 96002, 2025.
[22] T. Salomi.S, “Sensing heart beat and body temperature DIGITALLY USING Arduino,” P. 960033, 2025.
[23] K. Deepika, K. Vedanth, AND K. Tejesh, “Blood Oxygen And Heart Rate Monitor With Max30100 And Arduino,” vol. 23, no. 05, 2024.
[24] A. Adeyemi, “Comparing the Psychophysical Capabilities on Fingertip and Wrist using Method of Adjustment *,” vol. 5, no. 121, pp. 1–8, 2025, doi: 10.57020/ject.1522842.
[25] R. Run, J. Chang, and M. Yen, “The Wire-free Breadboard – A Feasibility Study on Digital Circuit,” vol. 4, no. 4, pp. 97–103, 2016, doi: 10.13189/ujeee.2016.040401.
[26] M. K. Summers, “simple microprocessor breadboard system for use in microelectronics or computer education-part,” vol. 1, 2024.
[27] S. Sriani, “Pemanfaatan Sistem Pengendali Water Level Control Untuk Budidaya Ikan Gurame Pada Kolam Terpal Menggunakan Logika Fuzzy Berbasis Mikrokontroler,” Elkawnie, vol. 5, no. 1, p. 47, 2019, doi: 10.22373/ekw.v5i1.3766.
[28] J. B. Awotunde, O. E. Matiluko, and O. W. Fatai, “Medical Diagnosis System Using Fuzzy Logic,” vol. 7, no. 2, pp. 0–7, 2014.
[29] B. Setia, “Penerapan Logika Fuzzy pada Sistem Cerdas,” J. Sist. Cerdas, vol. 2, no. 1, pp. 61–66, 2019, doi: 10.37396/jsc.v2i1.18.
[30] K. Rana, R. Hosseini, and S. Branch, “A fuzzy expert system for heart disease diagnosis,” vol. 7, no. 2, pp. 101–114, 2023.
[31] M. I. Frenda and R. Azka, “International Journal of Enterprise Modelling Enhancing Toddler Health Management : A Fuzzy Mamdani Decision Support System in Pediatric Healthcare,” vol. 18, no. 1, pp. 42–51, 2024.
[32] G. Ahmad, M. A. Khan, S. Abbas, A. Athar, B. S. Khan, and M. S. Aslam, “Automated Diagnosis of Hepatitis B Using Multilayer Mamdani Fuzzy Inference System,” vol. 2019, no. i, 2022, doi: 10.1155/2019/6361318.
[33] D. Kurniadi, F. Nuraeni, and D. Jaelani, “Implementasi Logika Fuzzy Mamdani Pada Sistem Prediksi Calon Penerima Program Keluarga Harapan,” J. Algoritm., vol. 19, no. 1, pp. 151–162, 2022, doi: 10.33364/algoritma/v.19-1.1016.
[34] J. Zhang et al., “Chemosphere In situ generation of highly localized chlorine by laser-induced graphene electrodes during electrochemical disinfection,” Chemosphere, vol. 335, no. December 2022, p. 139123, 2023, doi: 10.1016/j.chemosphere.2023.139123.